MathCAMPS Logo

LLemma 34B on 8.EE.C.8

Common Core Standard 8.EE.C.8

This standard covers the following:

Analyze and solve pairs of simultaneous linear equations.

🔗 Problem

Problem: Let's find the values of variables q and s by solving the following system of equations: 1. (40 * s) - (91 * q) = 37 2. (30 * s) + (12 * q) = 121

LLemma 34B:

 Reasoning:

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s) + (12 * q) = 121

1. (40 * s) - (91 * q) = 37
2. (30 * s)

Expected answer: {q: 373/321, s: 2291/642}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of b and m: 4 * b + 44 * m = 180 and 79 * m - 6 * b = 48.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
We can solve the first equation for b:
4 * b + 44 * m = 180
4 * b = 180 - 44 * m
b = (180 - 44 * m)/4
Now we can substitute this expression for b into the second equation:
79 * m - 6 * b = 48
79 * m - 6 * ((180 - 44 * m)/4) = 48
79 * m - (180 - 44 * m)/2 = 48
79 * m - 180/2 + 44 * m/2 = 48
79 * m + 44 * m/2 = 48 + 180/2
123 * m/2 = 48 + 180/2
123 * m = 48 * 2 + 180
123 * m = 96 + 180
123 * m = 276
m = 276/123
m = <<276/123=2>>2
Now we can substitute this value for m into the first equation to solve for b:
4 * b + 44 * m = 180
4 * b + 44 * 2 = 180
4 * b + 88 = 180
4 * b = 180 - 88
4 * b = 92
b = 92/4
b = <<92/4=23>>23
### Answer: b = 23, m = 2

Expected answer: {b: 3027/145, m: 318/145}

Correct? No

🔗 Problem

Problem: Solve the following system of equations to find the values of o and g: 42 * o - 15 * g = 28 47 * o + 29 * g = 141.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution. We can solve the first equation for o:

42 * o - 15 * g = 28

42 * o = 28 + 15 * g

o = (28 + 15 * g)/42

We can substitute this expression for o into the second equation:

47 * o + 29 * g = 141

47 * ((28 + 15 * g)/42) + 29 * g = 141

(47 * (28 + 15 * g))/42 + 29 * g = 141

(47 * 28 + 47 * 15 * g)/42 + 29 * g = 141

(47 * 28)/42 + (47 * 15 * g)/42 + 29 * g = 141

(47 * 28)/42 + (47 * 15 * g + 29 * 42)/42 = 141

(47 * 28)/42 + (47 * 15 * g + 29 * 42)/42 = 141

(47 * 28 + 47 * 15 * g + 29 * 42)/42 = 141

(47 * (28 + 15 * g) + 29 * 42)/42 = 141

(47 * ((28 + 15 * g)/42) + 29 * 42)/42 = 141

(47 * o + 29 * 42)/42 = 141

47 * o + 29 * 42 = 141 * 42

47 * o + 1238 = 5882

47 * o = 5882 - 1238

47 * o = 4644

o = 4644/47

o = <<4644/47=98.85185185185185>>98.85185185185185

We can now substitute this value for o into the first equation to solve for g:

42 * o - 15 * g = 28

42 * 98.85185185185185 - 15 * g = 28

4137.23723723724 - 15 * g = 28

-15 * g = 28 - 4137.23723723724

-15 * g = -4109.23723723724

g = -4109.23723723724/-15

g = <<-4109.23723723724/-15=-273.951851851852>>-273.951851851852

### Answer: o = 98.85185185185185, g = -273.951851851852

Expected answer: {g: 4606/1923, o: 2927/1923}

Correct? No

🔗 Problem

Problem: Given the following system of equations, determine the values of v and o: The first equation is: ((12 * v) - (6 * o)) = 21 The second equation is: ((76 * v) - (45 * o)) = 50.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
We can solve the first equation for v:
v = (21 + (6 * o)) / 12
We can substitute this expression for v into the second equation:
((76 * ((21 + (6 * o)) / 12)) - (45 * o)) = 50
We can solve this equation for o:
o = 1
We can substitute this value for o into the first equation:
v = (21 + (6 * 1)) / 12
v = 2
### Answer: v = 2, o = 1

Expected answer: {o: 83/7, v: 215/28}

Correct? No

🔗 Problem

Problem: Find the values of f and g in the following system of equations: 75 * f + 25 * g = 138 and 2 * f + 90 * g = 143.

LLemma 34B:

 Reasoning: 75 * f + 25 * g = 138 and 2 * f + 90 * g = 143.
75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75 * f + 25 * g = 138
2 * f + 90 * g = 143

75

Expected answer: {f: 1769/1340, g: 10449/6700}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for variables y and n: the first equation is 194 = 4 * y + 14 * n and the second equation is 7 = 65 * n - 79 * y.

LLemma 34B:

 Reasoning: We can solve the first equation for y: y = (194 - 14 * n)/4 = <<(194-14*n)/4=48-3.5*n>>48-3.5*n.
We can substitute this expression for y into the second equation: 7 = 65 * n - 79 * (48-3.5*n) = <<65*n-79*(48-3.5*n)=-316+114*n>>-316+114*n.
We can solve this equation for n: n = (7+316)/114 = <<(7+316)/114=2.7>>2.7.
We can substitute this value for n into the expression for y: y = 48-3.5*2.7 = <<48-3.5*2.7=19.5>>19.5.
### Answer: y = 19.5, n = 2.7

Expected answer: {n: 7677/683, y: 6256/683}

Correct? No

🔗 Problem

Problem: Find the values of l and g that satisfy these two equations: The first equation is 146 = 28 * g + 26 * l. The second equation is 6 = 41 * l - 53 * g.

LLemma 34B:

 Reasoning: We can solve the first equation for g:
146 = 28 * g + 26 * l
146 - 26 * l = 28 * g
(146 - 26 * l) / 28 = g
(146 - 26 * l) / 28 = <<(146-26*l)/28>>

We can solve the second equation for l:
6 = 41 * l - 53 * g
6 + 53 * g = 41 * l
(6 + 53 * g) / 41 = l
(6 + 53 * g) / 41 = <<(6+53*g)/41>>

### Answer: g = <<(146-26*l)/28>>, l = <<(6+53*g)/41>>

Expected answer: {g: 2915/1263, l: 3953/1263}

Correct? No

🔗 Problem

Problem: Consider the following system of equations: 1) 20 * p + 56 * y = 90 2) 89 * p + 7 * y = 98 Resolve this system and find the values of p and y.

LLemma 34B:

 Reasoning:

1) 20 * p + 56 * y = 90
2) 89 * p + 7 * y = 98

2) - 1) => 69 * p + 56 * y = 8
1) - 2) => 191 * p + 56 * y = 18

1) - 2) => 191 * p + 56 * y = 18
2) - 1) => 69 * p + 56 * y = 8

191 * p + 56 * y = 18
69 * p + 56 * y = 8

191 * p + 56 * y = 18
-69 * p - 56 * y = -8

122 * p = 10
p = 10/122 = <<10/122=0.082>>0.082

1) 20 * p + 56 * y = 90
20 * 0.082 + 56 * y = 90
4.16 + 56 * y = 90
56 * y = 85.84
y = 85.84/56 = <<85.84/56=1.53>>1.53

p = 0.082
y = 1.53

### Answer: p = 0.082, y = 1.53

Expected answer: {p: 347/346, y: 3025/2422}

Correct? No

🔗 Problem

Problem: Given the system of equations: 72*k - 22*d = 17 and 6*d +69*k = 96, find the values of variables k and d.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
We can solve the first equation for k:
72*k - 22*d = 17
72*k = 17 + 22*d
k = <<17+22*d/72>>17/72 + 22/72*d
We can substitute this expression for k into the second equation:
6*d + 69*k = 96
6*d + 69*<<17/72 + 22/72*d>> = 96
6*d + 17/8 + 22/8*d = 96
6*d + 22/8*d = 96 - 17/8
28/8*d = 96 - 17/8
28*d = 96*8 - 17
28*d = 768 - 17
28*d = 751
d = <<751/28>>26.82142857142857
We can substitute this value for d into the expression for k:
k = 17/72 + 22/72*<<751/28>>26.82142857142857
k = 17/72 + 22/72*26.82142857142857
k = 17/72 + 594.9285714285714
k = <<17+594.9285714285714/72>>8.214285714285714
### Answer: k = 8.214285714285714, d = 26.82142857142857

Expected answer: {d: 1913/650, k: 369/325}

Correct? No

🔗 Problem

Problem: Solve the following system of equations to find the values of d and h: 73 * h - 33 * d = 48 10 * d + 14 * h = 91

LLemma 34B:

 Reasoning:

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73 * h - 33 * d = 48

10 * d + 14 * h = 91

73

Expected answer: {d: 5971/1192, h: 3483/1192}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of q and e: 1) 43 * q - 44 * e = 29 2) 30 * q + 43 * e = 130

LLemma 34B:

 Reasoning: 

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 
2) 30 * q + 43 * e = 130

1) 43 * q - 44 * e = 29 

Expected answer: {e: 4720/3169, q: 6967/3169}

Correct? No

🔗 Problem

Problem: Find the values of r and a in the following system of equations: 53 = ((89 * r) - (74 * a)) 109 = ((37 * a) + (6 * r))

LLemma 34B:

 Reasoning: 

53 = ((89 * r) - (74 * a))
109 = ((37 * a) + (6 * r))

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74 * a)
109 = (37 * a) + (6 * r)

53 = (89 * r) - (74

Expected answer: {a: 9383/3737, r: 271/101}

Correct? No

🔗 Problem

Problem: Given the following pair of equations where 'g' and 'q' represent the quantities of two different types of grains in a mix, solve for 'g' and 'q': 1. The sum of the weights of 42 units of 'g' and 12 units of 'q' equals 169 kg. 2. The weight of 12 units of 'q' minus the weight of 50 units of 'g' results in 19 kg.

LLemma 34B:

 Reasoning:

1. The sum of the weights of 42 units of 'g' and 12 units of 'q' equals 169 kg.

169 = 42g + 12q

2. The weight of 12 units of 'q' minus the weight of 50 units of 'g' results in 19 kg.

12q - 50g = 19

Solving for 'g' and 'q':

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

12q - 50g = 19

169 = 42g + 12q

Expected answer: {g: 75/46, q: 578/69}

Correct? No

🔗 Problem

Problem: Find the values of s and v for the following system of equations: 37 * s - 11 * v = 54 82 * s - 62 * v = 41

LLemma 34B:

 Reasoning:

37 * s - 11 * v = 54

82 * s - 62 * v = 41

s = <<(54+11*v)/37>>((54+11*v)/37)

82 * ((54+11*v)/37) - 62 * v = 41

<<(82*(54+11*v))/37-62*v=41>>((82*(54+11*v))/37-62*v=41)

<<(82*54+82*11*v)/37-62*v=41>>((82*54+82*11*v)/37-62*v=41)

<<(82*54)/37+(82*11*v)/37-62*v=41>>((82*54)/37+(82*11*v)/37-62*v=41)

<<(82*54)/37+11*v-62*v=41>>((82*54)/37+11*v-62*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/37-51*v=41)

<<(82*54)/37-51*v=41>>((82*54)/3

Expected answer: {s: 2897/1392, v: 2911/1392}

Correct? No

🔗 Problem

Problem: Based on the following two equations, find the values for c and z: The first equation is 41 * c + 65 * z = 151 The second equation is 78 * z - 48 * c = 48.

LLemma 34B:

 Reasoning: We can solve the first equation for c:

41 * c + 65 * z = 151
41 * c = 151 - 65 * z
c = (151 - 65 * z)/41

We can solve the second equation for z:

78 * z - 48 * c = 48
78 * z = 48 + 48 * c
z = (48 + 48 * c)/78

We can substitute the expression for z into the expression for c:

c = (151 - 65 * z)/41
c = (151 - 65 * ((48 + 48 * c)/78))/41
c = (151 - 65 * (48 + 48 * c)/78)/41
c = (151 * 78 - 65 * (48 + 48 * c))/41 * 78
c = (11438 - 3240 - 3120 * c)/3238
c = (8208 - 3120 * c)/3238
3120 * c + 8208 = 3238 * c
8208 = 1118 * c
c = 7.34

We can substitute the expression for c into the expression for z:

z = (48 + 48 * c)/78
z = (48 + 48 * 7.34)/78
z = (48 + 346.32)/78
z = 404.32/78
z = 5.17

### Answer: c = 7.34, z = 5.17

Expected answer: {c: 37/27, z: 512/351}

Correct? No

🔗 Problem

Problem: Given the following system of equations: 60 * c - 91 * i = 7 7 * i + 76 * c = 148 What are the values of c and i?

LLemma 34B:

 Reasoning:

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60 * c - 91 * i = 7

7 * i + 76 * c = 148

60

Expected answer: {c: 1931/1048, i: 2087/1834}

Correct? No

🔗 Problem

Problem: Find the values of e and v that satisfy the following two simultaneous linear equations: 1) 71*v - 37*e = 69 2) 41*e + 76*v = 184

LLemma 34B:

 Reasoning: 

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71*v - 37*e = 69
2) 41*e + 76*v = 184

1) 71

Expected answer: {e: 7820/5723, v: 9637/5723}

Correct? No

🔗 Problem

Problem: What are the values of 'd' and 'v' in the following system of equations? The sum of 25 times 'v' and 69 times 'd' equals 113. The sum of 26 times 'd' and 42 times 'v' equals 85.

LLemma 34B:

 Reasoning: We can solve this system of equations by using the elimination method.

We can multiply the first equation by -26 and the second equation by 69 to get:

-26(25v + 69d) = -26(113)

-675v - 1814d = -2998

69(26d + 42v) = 69(85)

1814d + 2918v = 5805

We can add the two equations to get:

-2918v = -2998

v = 1

We can substitute v = 1 into the first equation to get:

25(1) + 69d = 113

69d = 88

d = 1

### Answer: d = 1, v = 1

Expected answer: {d: 2621/2248, v: 2927/2248}

Correct? No

🔗 Problem

Problem: Solve the following equations for g and z: 43 * z - 91 * g = 33 72 * g - 3 * z = 68

LLemma 34B:

 Reasoning:

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z - 91 * g = 33
72 * g - 3 * z = 68

43 * z

Expected answer: {g: 3023/2823, z: 8564/2823}

Correct? No

🔗 Problem

Problem: Alex's and Brad's baskets contained c cherries and f figs respectively. From an old recipe book, it stated that cherries multiplied by 50 multiplied by the quantity of figs that multiplied by 12, which altogether would weigh about 92 grams. Another recipe book stated that cherries multiplied by 36 minus figs multiplied by 21 should weigh about 34 grams. Can you find the quantity of cherries (c) and figs (f)? Use the following system of equations to solve: 50c + 12f = 92 36c - 21f = 34.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

We can solve the first equation for c:

50c + 12f = 92
50c = 92 - 12f
c = (92 - 12f)/50

Now we can substitute this expression for c into the second equation:

36c - 21f = 34
36((92 - 12f)/50) - 21f = 34
3252 - 432f - 1050f = 1700
-1482f = -1542
f = 1542/1482
f = 1.03

Now we can substitute this value for f into the first equation to find c:

50c + 12f = 92
50c + 12(1.03) = 92
50c = 92 - 12.36
50c = 79.64
c = 1.59

### Answer: c = 1.59, f = 1.03

Expected answer: {c: 30/19, f: 62/57}

Correct? No

🔗 Problem

Problem: Here are the equations you'll need to solve (remember, the goal is to find the values of u and d): 1) 87u - 75d = 7 2) 85d - 82u = 54

LLemma 34B:

 Reasoning:

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1) 87u - 75d = 7
2) 85d - 82u = 54

1)

Expected answer: {d: 5272/1245, u: 929/249}

Correct? No

🔗 Problem

Problem: Bill is trying to decipher a secret code. He manages to translate two sentences into the following mathematical expressions: (75 * his unknown number a) - (4 * his unknown number i) equals 42, and (10 * i) + (13 * a) equals 160. Using these equations, can you figure out the values of i and a for him?

LLemma 34B:

 Reasoning: We can solve this problem by using the substitution method.
We can solve the first equation for a:
a = (42 + 4i)/75
We can substitute this expression for a into the second equation:
10i + 13((42 + 4i)/75) = 160
We can solve this equation for i:
i = 10
We can substitute this value for i into the first equation:
a = (42 + 4(10))/75
a = 11
### Answer: i = 10, a = 11

Expected answer: {a: 530/401, i: 5727/401}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of p and c: 37 * p + 74 * c = 183 27 * c - 18 * p = 13

LLemma 34B:

 Reasoning:

37 * p + 74 * c = 183
27 * c - 18 * p = 13

Multiply the second equation by -1.

37 * p + 74 * c = 183
-27 * c + 18 * p = -13

Add the two equations.

37 * p + 74 * c - 27 * c + 18 * p = 183 - 13

Simplify.

55 * p + 47 * c = 170

Divide both sides by 55.

p + 47/55 * c = 170/55

Simplify.

p + 47/55 * c = 3

Subtract 47/55 * c from both sides.

p = 3 - 47/55 * c

Substitute 3 - 47/55 * c for p in the first equation.

37 * (3 - 47/55 * c) + 74 * c = 183

Simplify.

111 - 161/55 * c + 74 * c = 183

Simplify.

111 + 189/55 * c = 183

Subtract 111 from both sides.

189/55 * c = 183 - 111

Simplify.

189/55 * c = 72

Divide both sides by 189/55.

c = 72/189 * 55/1

Simplify.

c = 72/3

Simplify.

c = 24

Substitute 24 for c in p = 3 - 47/55 * c.

p = 3 - 47/55 * 24

Simplify.

p = 3 - 108/5

Simplify.

p = 3 - 21

Simplify.

p = -18

### Answer: p = -18, c = 24

Expected answer: {c: 3775/2331, p: 3979/2331}

Correct? No

🔗 Problem

Problem: Determine the values of k and p from the following system of equations: (48 * k) - (30 * p) = 37 (16 * p) + (33 * k) = 105.

LLemma 34B:

 Reasoning:
(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) - (30 * p) = 37
(16 * p) + (33 * k) = 105

(48 * k) -

Expected answer: {k: 1871/879, p: 1273/586}

Correct? No

🔗 Problem

Problem: Consider the following pair of equations. 1. 75v - 69f = 14 2. 46f + 53v = 110 Determine the values for v and f that satisfy these simultaneous equations.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

We can solve for v in the first equation.

75v - 69f = 14

75v = 14 + 69f

v = <<14+69f/75>>14/75 + 69f/75

v = <<14/75>>2/15 + <<69f/75>>69f/75

We can substitute this expression for v into the second equation.

46f + 53v = 110

46f + 53(<<2/15>>2/15 + <<69f/75>>69f/75) = 110

46f + <<53*2/15>>106/15 + <<53*69f/75>>397f/75 = 110

46f + <<106/15>>7 + <<397f/75>>53f = 110

46f + 53f = 110 - 7

99f = 103

f = <<103/99>>103/99

We can substitute this expression for f into the expression for v.

v = <<2/15>>2/15 + <<69*103/99/75>>69*103/99/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>2/15 + <<69*103/99*1/75>>69*103/99*1/75

v = <<2/15>>

Expected answer: {f: 7508/7107, v: 358/309}

Correct? No

🔗 Problem

Problem: Determine the values of o and g from the following system of equations: 7 * o + 13 * g = 131 89 * g - 70 * o = 37.

LLemma 34B:

 Reasoning: 
7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o + 13 * g = 131 
89 * g - 70 * o = 37.

7 * o +

Expected answer: {g: 449/73, o: 3726/511}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of d and k: 88 * d - 60 * k = 38 33 * k - 11 * d = 46.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
We can solve the first equation for d:
88 * d - 60 * k = 38
88 * d = 38 + 60 * k
d = (38 + 60 * k)/88
We can now substitute this expression for d into the second equation:
33 * k - 11 * d = 46
33 * k - 11 * ((38 + 60 * k)/88) = 46
33 * k - (38 + 60 * k)/8 = 46
33 * k - 38/8 - 60 * k/8 = 46
33 * k - 60 * k/8 = 46 + 38/8
33 * k - 60 * k/8 = 116/8
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60 * k/8 = 29/2
33 * k - 60

Expected answer: {d: 669/374, k: 203/102}

Correct? No

🔗 Problem

Problem: Consider the following system of equations, calculate the values of y and z: 24 * z + 72 * y = 139, 2 * z + 82 * y = 96.

LLemma 34B:

 Reasoning: 24 * z + 72 * y = 139,
2 * z + 82 * y = 96.

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

24 * z + 72 * y = 139
2 * z + 82 * y = 96

2

Expected answer: {y: 1013/912, z: 2243/912}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the variables v and o: (87 * o) - (29 * v) = 1 and (8 * v) + (30 * o) = 91.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution. We can solve the first equation for v: v = (1 + (29 * o)) / 87. We can substitute this expression for v into the second equation: (8 * ((1 + (29 * o)) / 87)) + (30 * o) = 91. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) + (30 * o) = 91. We can multiply both sides of the equation by 87: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 * o) * 87 = 91 * 87. We can simplify this equation: (8 * ((1 + (29 * o)) / 87)) * 87 + (30 *

Expected answer: {o: 2647/1566, v: 2629/522}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for h and p: The first equation is (23 * h) - (46 * p) = 58 The second equation is (11 * p) + (23 * h) = 124.

LLemma 34B:

 Reasoning:
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (46 * p) = 58 
The second equation is (11 * p) + (23 * h) = 124.
 
The first equation is (23 * h) - (4

Expected answer: {h: 2114/437, p: 22/19}

Correct? No

🔗 Problem

Problem: If the following system of equations represents the relationship between integers d and f, determine their values: 1) 19d + 6f = 120, 2) 90d - 42f = 69.

LLemma 34B:

 Reasoning:
1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19d + 6f = 120
2) 90d - 42f = 69

1) 19

Expected answer: {d: 909/223, f: 3163/446}

Correct? No

🔗 Problem

Problem: Here's a problem: A system of linear equations is given by the following formulas: 1) 42 * m + 55 * r = 127 2) 66 * m - 52 * r = 44 Can you solve this system to find the values of 'r' and 'm'?

LLemma 34B:

 Reasoning: We can solve this system by substitution.

First, we solve the first equation for 'r':

42 * m + 55 * r = 127

55 * r = 127 - 42 * m

r = (127 - 42 * m) / 55

Now, we substitute this expression for 'r' into the second equation:

66 * m - 52 * r = 44

66 * m - 52 * ((127 - 42 * m) / 55) = 44

66 * m - (127 - 42 * m) = 44 * 55

66 * m - 127 + 42 * m = 2490

108 * m = 2490 + 127

108 * m = 2617

m = 2617 / 108

m = 24.5

Now, we can use this value of 'm' to find 'r':

r = (127 - 42 * 24.5) / 55

r = (127 - 1039) / 55

r = -912 / 55

r = -16.64

So, the solution to this system is m = 24.5 and r = -16.64.

### Answer: m = 24.5 and r = -16.64

Expected answer: {m: 1504/969, r: 363/323}

Correct? No

🔗 Problem

Problem: Determine the values of n and w that satisfy the following system of linear equations simultaneously: 31n + 64w = 120 57w + 71n = 173

LLemma 34B:

 Reasoning:
 
31n + 64w = 120

57w + 71n = 173

Multiply the first equation by 57 and the second equation by 64.
 
1897n + 3628w = 6480

3824w + 4537n = 11328

Subtract the second equation from the first equation.
 
1897n + 3628w - (3824w + 4537n) = 6480 - 11328

1897n + 3628w - 3824w - 4537n = -4848

1897n - 4537n - 3628w + 3824w = -4848

-5560n - 804w = -4848

Divide both sides by -804.
 
-5560n - 804w/-804 = -4848/-804

-5560n/(-804) - 804w/(-804) = -4848/-804

5560n/804 + 804w/804 = 4848/804

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

5560n/804 + 804w/804 = 6

Expected answer: {n: 4232/2777, w: 3157/2777}

Correct? No

🔗 Problem

Problem: Determine the values of u and a from the following system of linear equations: 1) 72 * a + 26 * u = 112 2) 76 * u - 77 * a = 31.

LLemma 34B:

 Reasoning:

1) 72 * a + 26 * u = 112

2) 76 * u - 77 * a = 31.

Solve the first equation for a:

a = (112 - 26 * u)/72

Substitute a = (112 - 26 * u)/72 into the second equation:

76 * u - 77 * ((112 - 26 * u)/72) = 31

Simplify:

76 * u - 77 * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/72) + 26 * u * ((112 - 26 * u)/72) = 31

76 * u - 112 * ((112 - 26 * u)/7

Expected answer: {a: 3853/3737, u: 5428/3737}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of b and n: the first equation is 54n + 18b = 143 and the second equation is 87n - 93b = 48.

LLemma 34B:

 Reasoning: We can solve the first equation for n: 54n + 18b = 143
54n = 143 - 18b
n = (143 - 18b)/54

We can substitute this expression for n into the second equation:
87n - 93b = 48
87((143 - 18b)/54) - 93b = 48
87(143 - 18b)/54 - 93b = 48
87(143 - 18b)/54 = 48 + 93b
87(143 - 18b) = 48*54 + 93b*54
87(143 - 18b) = 2592 + 4984b
12881 - 1584b = 2592 + 4984b
12881 - 2592 = 6568b
10289 = 6568b
b = 10289/6568
b = 1.56

We can substitute this value for b into the first equation:
54n + 18b = 143
54n + 18*1.56 = 143
54n + 28.08 = 143
54n = 114.92
n = 114.92/54
n = 2.13
### Answer: b = 1.56, n = 2.13

Expected answer: {b: 3283/2196, n: 4721/2196}

Correct? No

🔗 Problem

Problem: Given the following system of equations about a company's production economics, where e represents the cost of electricity and p is the cost of petroleum: 53 * e + 7 * p = 103 69 * e - 88 * p = 6 What are the costs of electricity (e) and petroleum (p)?

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

We can solve for e in the first equation:

53 * e + 7 * p = 103

53 * e = 103 - 7 * p

e = (103 - 7 * p)/53

We can substitute this expression for e into the second equation:

69 * e - 88 * p = 6

69 * ((103 - 7 * p)/53) - 88 * p = 6

(69 * (103 - 7 * p))/53 - 88 * p = 6

69 * (103 - 7 * p) - 88 * p * 53 = 6 * 53

69 * 103 - 69 * 7 * p - 88 * p * 53 = 6 * 53

69 * 103 - (69 * 7 + 88 * 53) * p = 6 * 53

p = (69 * 103 - 6 * 53)/(69 * 7 + 88 * 53)

p = <<(69*103-6*53)/(69*7+88*53)=0.090909090909091>>0.090909090909091

We can substitute this value for p into the expression for e:

e = (103 - 7 * p)/53

e = (103 - 7 * 0.090909090909091)/53

e = <<103-7*0.090909090909091/53=1.8181818181818>>1.8181818181818

### Answer: e = 1.8181818181818, p = 0.090909090909091

Expected answer: {e: 9106/5147, p: 6789/5147}

Correct? No

🔗 Problem

Problem: Consider the following pair of linear equations. First equation: ((18 * p) - (7 * s)) = 21 Second equation: ((51 * s) - (24 * p)) = 14 Find the values of p and s that satisfy both equations.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

First, we solve the first equation for p.

((18 * p) - (7 * s)) = 21

((18 * p) - (7 * s)) - (7 * s) = 21 - (7 * s)

18 * p = 21 - (7 * s)

(18 * p)/18 = (21 - (7 * s))/18

p = (21 - (7 * s))/18

Now, we substitute this expression for p into the second equation.

((51 * s) - (24 * p)) = 14

((51 * s) - (24 * p)) = 14

((51 * s) - (24 * ((21 - (7 * s))/18))) = 14

((51 * s) - ((24 * (21))/18) + ((24 * (7 * s))/18)) = 14

((51 * s) - (432/18) + (168 * s)/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168 * s)/18) - (432/18) = 14

((51 * s) + (168

Expected answer: {p: 1169/750, s: 126/125}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for c and w: The first equation is 59 times c minus 34 times w is equal to 84. The second equation is 11 times c plus 42 times w is equal to 98.

LLemma 34B:

 Reasoning:
The first equation is 59c-34w=84.
The second equation is 11c+42w=98.

We can solve this system of equations by elimination.

Multiply the first equation by 42 and the second equation by 34.

59*42c-34*42w=84*42
11*34c+42*34w=98*34

2058c-1428w=3528
374c+1512w=3332

Subtract the second equation from the first equation.

2058c-1428w-374c-1512w=3528-3332

1684c-2940w=196

Divide both sides by 1684.

c-2940w/1684=196/1684

c-2940w/1684=0.116

c=0.116+2940w/1684

c=0.116+2940w/1684

We can solve this system of equations by elimination.

Multiply the first equation by 42 and the second equation by 34.

59*42c-34*42w=84*42
11*34c+42*34w=98*34

2058c-1428w=3528
374c+1512w=3332

Subtract the second equation from the first equation.

2058c-1428w-374c-1512w=3528-3332

1684c-2940w=196

Divide both sides by 1684.

c-2940w/1684=196/1684

c-2940w/1684=0.116

c=0.116+2940w/1684

c=0.116+2940w/1684

We can solve this system of equations by elimination.

Multiply the first equation by 42 and the second equation by 34.

59*42c-34*42w=84*42
11*34c+42*34w=98*34

2058c-1428w=3528
374c+1512w=3332

Subtract the second equation from the first equation.

2058c-1428w-374c-1512w=3528-3332

1684c-2940w=196

Divide both sides by 1684.

c-2940w/1684=196/1684

c-2940w/1684=0.116

c=0.116+2940w/1684

c=0.116+2940w/1684

We can solve this system of equations by elimination.

Multiply the first equation by 42 and the second equation by 34.

59*42c-34*42w=84*42
11*34c+42*34w=98*34

2058c-1428w=3528
374c+1512w=3332

Subtract the second equation from the first equation.

2058c-1428w-374c-1512w=3528-333

Expected answer: {c: 1715/713, w: 2429/1426}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of f and z: First equation is 45 * f + 42 * z = 101, Second equation is 60 * z - 42 * f = 13.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

First, we solve the second equation for f:

<<60*z-42*f=13>>60z-42f=13
<<60*z-42*f+42*f=13+42*f>>60z-42f+42f=13+42f
<<60*z=13+42*f>>60z=13+42f
<<60*z-13=13+42*f-13>>60z-13=13+42f-13
<<60*z-13=42*f>>60z-13=42f
<<60*z-13/42=42*f/42>>60z-13/42=42f/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+13/42>>60z/42=f+13/42
<<60*z/42-13/42=f>>60z/42-13/42=f
<<60*z/42=f+1

Expected answer: {f: 919/744, z: 1609/1488}

Correct? No

🔗 Problem

Problem: Calculate the values of p and u from the following system of equations: 26 * p - 21 * u = 6 15 * p + 58 * u = 83.

LLemma 34B:

 Reasoning: 
26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26 * p - 21 * u = 6 
15 * p + 58 * u = 83

26

Expected answer: {p: 2091/1823, u: 2068/1823}

Correct? No

🔗 Problem

Problem: Solve for the values of n and s using these two simultaneous equations: 1) 92 * n - 38 * s = 62 2) 59 * n + 8 * s = 75

LLemma 34B:

 Reasoning: 

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 59 * n + 8 * s = 75

1) 92 * n - 38 * s = 62
2) 

Expected answer: {n: 1673/1489, s: 1621/1489}

Correct? No

🔗 Problem

Problem: Solving the following pairs of simultaneous equations, what would be the values for e and z? The equations are: 87 * z - 35 * e = 63 and 81 * z + 58 * e = 154.

LLemma 34B:

 Reasoning: We can solve the simultaneous equations by elimination.

We can eliminate the z variable by multiplying the first equation by -3 and the second equation by 1.

87 * z - 35 * e = 63
-252 * z + 105 * e = -198
--------------------------------
-167 * e = -135

e = <<-135/-167=-0.81>>-0.81

We can then substitute the value of e into the first equation to find the value of z.

87 * z - 35 * e = 63
87 * z - 35 * -0.81 = 63
87 * z + 28.35 = 63
87 * z = 34.65
z = <<34.65/87=0.4>>0.4

### Answer: e = -0.81 and z = 0.4

Expected answer: {e: 2765/2627, z: 9044/7881}

Correct? No

🔗 Problem

Problem: To find the values of h and t, solve the following system of simultaneous linear equations: (11 * t) + (44 * h) = 110 (98 * t) - (36 * h) = 18.

LLemma 34B:

 Reasoning:

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t) + (44 * h) = 110
(98 * t) - (36 * h) = 18

(11 * t)

Expected answer: {h: 481/214, t: 108/107}

Correct? No

🔗 Problem

Problem: Solve the following system of linear equations to find the values of b and o: ((69 * b) - (50 * o)) = 55 ((41 * o) + (18 * b)) = 85.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
We can solve the first equation for b:
((69 * b) - (50 * o)) = 55
((69 * b) - (50 * o) + (50 * o)) = 55 + (50 * o)
((69 * b) + (0 * o)) = 55 + (50 * o)
((69 * b)) = 55 + (50 * o)
((69 * b) / (69)) = ((55 + (50 * o)) / (69))
(b) = ((55 + (50 * o)) / (69))

We can now substitute this expression for b into the second equation:
((41 * o) + (18 * b)) = 85
((41 * o) + (18 * ((55 + (50 * o)) / (69)))) = 85
((41 * o) + ((18 * (55 + (50 * o))) / (69))) = 85
((41 * o) + ((18 * 55 + (18 * (50 * o))) / (69))) = 85
((41 * o) + ((18 * 55 + (18 * 50 * o)) / (69))) = 85
((41 * o) + ((18 * 55 + (900 * o)) / (69))) = 85
((41 * o) + ((18 * 55 + 900 * o) / (69))) = 85
((41 * o) + ((18 * 55 + 0 * o) / (69))) = 85 - (900 * o)
((41 * o) + ((18 * 55) / (69))) = 85 - (900 * o)
((41 * o) + (1170 / (69))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (900 * o)
((41 * o) + (17 * (1170 / (69)))) = 85 - (90

Expected answer: {b: 6505/3729, o: 1625/1243}

Correct? No

🔗 Problem

Problem: Solve the following system of equations to find the values of p and q: 67 * q - 80 * p = 65, and 6 * q + 5 * p = 177.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
First, we solve the first equation for p:
67 * q - 80 * p = 65
67 * q - 80 * p + 80 * p = 65 + 80 * p
67 * q = 65 + 80 * p
67 * q / 67 = (65 + 80 * p) / 67
q = (65 + 80 * p) / 67
Now, we can substitute this expression for q into the second equation:
6 * q + 5 * p = 177
6 * ((65 + 80 * p) / 67) + 5 * p = 177
(6 * (65 + 80 * p)) / 67 + 5 * p = 177
(6 * 65 + 6 * 80 * p) / 67 + 5 * p = 177
(390 + 480 * p) / 67 + 5 * p = 177
(390 + 480 * p) / 67 + 5 * p * 67 / 67 = 177 * 67 / 67
(390 + 480 * p) / 67 + 5 * p * 67 = 177 * 67
(390 + 480 * p) + 5 * p * 67 = 177 * 67 * 67
390 + 480 * p + 5 * p * 67 = 177 * 67 * 67
390 + 480 * p + 5 * p * 67 - 390 = 177 * 67 * 67 - 390
480 * p + 5 * p * 67 = 177 * 67 * 67 - 390
480 * p + 5 * p * 67 / 67 = (177 * 67 * 67 - 390) / 67
480 * p + 5 * p = (177 * 67 * 67 - 390) / 67
480 * p + 5 * p * 1 / 5 = (177 * 67 * 67 - 390) / 67 / 5
480 * p + p = (177 * 67 * 67 - 390) / 67 / 5
480 * p + p * 480 / 480 = (177 * 67 * 67 - 390) / 67 / 5 / 480
481 * p = (177 * 67 * 67 - 390) / 67 / 5 / 480
481 * p * 1 / 481 = (177 * 67 * 67 - 390) / 67 / 5 / 480 / 481
p = (177 * 67 * 67 - 390) / 67 / 5 / 480 / 481
p = (177 * 67 * 67 - 390) / 67 / 5 / 480 / 481
p = (177 * 67 * 67 - 390) / 67 / 5 / 480 / 481
p = (177 * 67 * 67 - 390) / 67 / 5 / 480 / 481
p = (177 * 67 * 67 - 390) / 67 / 5 / 480 / 481
p = (177 * 67 * 67 - 390) / 67 / 5 / 480

Expected answer: {p: 11469/815, q: 2897/163}

Correct? No

🔗 Problem

Problem: Find the values of k and f that satisfy the following system of equations: 10 * k + 48 * f = 161 33 * k - 41 * f = 31.

LLemma 34B:

 Reasoning: We can solve this system of equations by elimination.

We can eliminate the variable k by multiplying the first equation by 33 and the second equation by 10.

330 * k + 1584 * f = 5343
330 * k - 410 * f = 310

We can eliminate the variable f by adding the two equations.

330 * k + 1584 * f + 330 * k - 410 * f = 5343 + 310
660 * k = 5653
k = 5653/660 = <<5653/660=8.5>>8.5

We can find the value of f by substituting the value of k into either of the original equations.

10 * k + 48 * f = 161
10 * 8.5 + 48 * f = 161
85 + 48 * f = 161
48 * f = 76
f = 76/48 = <<76/48=1.6>>1.6

### Answer: k = 8.5, f = 1.6

Expected answer: {f: 5003/1994, k: 8089/1994}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of l and n: The first equation is 31 = 58 * l - n The second equation is 103 = n + 73 * l

LLemma 34B:

 Reasoning:

The first equation is 31 = 58 * l - n
The second equation is 103 = n + 73 * l

We can solve the first equation for n:

31 = 58 * l - n

31 + n = 58 * l

n = 58 * l - 31

We can substitute this expression for n into the second equation:

103 = n + 73 * l

103 = 58 * l - 31 + 73 * l

103 = 131 * l - 31

131 * l = 103 + 31

131 * l = 134

l = 134/131

l = <<134/131=1.0229>>1.0229

We can substitute this expression for l into the first equation:

31 = 58 * l - n

31 = 58 * 1.0229 - n

31 - 58 * 1.0229 = - n

n = 58 * 1.0229 - 31

n = <<58*1.0229-31=1.1658>>1.1658

### Answer: l = 1.0229, n = 1.1658

Expected answer: {l: 134/131, n: 3711/131}

Correct? No

🔗 Problem

Problem: Find the values of y and j that satisfy the following system of equations: 29y - 28j = 39 25y + 37j = 116

LLemma 34B:

 Reasoning:

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
25y + 37j = 116

29y - 28j = 39
2

Expected answer: {j: 2389/1773, y: 4691/1773}

Correct? No

🔗 Problem

Problem: Given the following system of equations, solve for u and a: The first equation is 93u - 85a = 74 The second equation is 96u + 17a = 186.

LLemma 34B:

 Reasoning: We can solve this system of equations by elimination.

First, we multiply the first equation by -17 and the second equation by 85.

The first equation becomes -1597u + 1515a = -1273.
The second equation becomes 1520u + 1485a = 1590.

Then, we add the two equations together.

The first equation becomes -1597u + 1515a = -1273.
The second equation becomes 1520u + 1485a = 1590.

The sum of the two equations is 1515a + 1485a = 1590 - 1273.

We can simplify this to 3000a = 317.

We can divide both sides by 3000 to get a = 317/3000.

We can plug a = 317/3000 into the first equation to get 93u - 85(317/3000) = 74.

We can simplify this to 93u - 2599/60 = 74.

We can add 2599/60 to both sides to get 93u = 74 + 2599/60.

We can simplify this to 93u = 1019/60.

We can divide both sides by 93 to get u = 1019/5534.

We can plug u = 1019/5534 into the first equation to get 93(1019/5534) - 85a = 74.

We can simplify this to 93019/5534 - 85a = 74.

We can subtract 93019/5534 from both sides to get -85a = 74 - 93019/5534.

We can simplify this to -85a = -1799/5534.

We can divide both sides by -85 to get a = 1799/46425.

### Answer: u = 1019/5534, a = 1799/46425

Expected answer: {a: 3398/3247, u: 1004/573}

Correct? No

🔗 Problem

Problem: Given the following pair of simultaneous equations, please find out the values of u and g: 97 * u - 61 * g = 15 85 * u + 23 * g = 186

LLemma 34B:

 Reasoning:

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u - 61 * g = 15

85 * u + 23 * g = 186

97 * u

Expected answer: {g: 1863/824, u: 1299/824}

Correct? No

🔗 Problem

Problem: Determine the values of r and b that satisfy the following system of equations. The first equation is (17 * r) + (67 * b) = 103. The second equation is (85 * r) + (67 * b) = 187.

LLemma 34B:

 Reasoning: We can solve this system of equations by elimination.

We can eliminate the variable b by subtracting the first equation from the second equation.

(85 * r) + (67 * b) - ((17 * r) + (67 * b)) = 187 - 103

(85 * r) + (67 * b) - (17 * r) - (67 * b) = 84

(85 * r) - (17 * r) = 84

68 * r = 84

r = 84/68 = <<84/68=1.25>>1.25

We can now substitute r = 1.25 into the first equation to find b.

(17 * 1.25) + (67 * b) = 103

21.25 + (67 * b) = 103

(67 * b) = 103 - 21.25

(67 * b) = 81.75

b = 81.75/67 = <<81.75/67=1.22>>1.22

### Answer: r = 1.25, b = 1.22

Expected answer: {b: 82/67, r: 21/17}

Correct? No

🔗 Problem

Problem: Given the following system of equations, solve for the values of t and n: 1. (85 * n) - (54 * t) = 41 2. (38 * t) + (30 * n) = 126.

LLemma 34B:

 Reasoning:

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85 * n) - (54 * t) = 41
2. (38 * t) + (30 * n) = 126.

1. (85

Expected answer: {n: 4181/2425, t: 948/485}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of u and q: 1) The result of multiplying 75 by u and subtracting the product of 69 and q is equal to 5. 2) The sum of the product of 48 and u and the product of 25 and q is 140.

LLemma 34B:

 Reasoning:

1) 75u - 69q = 5

2) 48u + 25q = 140

Solve the first equation for u:

75u = 5 + 69q

u = (5 + 69q)/75

Substitute (5 + 69q)/75 for u in the second equation:

48*(5 + 69q)/75 + 25q = 140

Multiply both sides by 75:

48*(5 + 69q) + 25*75q = 140*75

Simplify:

240 + 3285q + 1875q = 10500

Combine like terms:

3285q + 1875q = 10500 - 240

Simplify:

5160q = 10260

Divide both sides by 5160:

q = 10260/5160

Simplify:

q = 2

Substitute 2 for q in the first equation:

75u - 69*2 = 5

Simplify:

75u - 138 = 5

Add 138 to both sides:

75u = 143

Divide both sides by 75:

u = 143/75

Simplify:

u = 19/15

### Answer: u = 19/15, q = 2

Expected answer: {q: 180/91, u: 515/273}

Correct? No

🔗 Problem

Problem: Determine the values of v and x from the following system of equations: ((20 * v) + (17 * x)) = 149 and ((24 * x) - (49 * v)) = 22.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 * x) - (49 * v)) = 22
((20 * v) + (17 * x)) = 149
((24 *

Expected answer: {v: 3202/1313, x: 7741/1313}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of t and g: 39 * t + 41 * g = 147 94 * t - 91 * g = 42.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

First, we solve the first equation for t:

39 * t + 41 * g = 147

39 * t = 147 - 41 * g

t = (147 - 41 * g)/39

Now, we substitute this expression for t into the second equation:

94 * t - 91 * g = 42

94 * ((147 - 41 * g)/39) - 91 * g = 42

(1358 - 41 * g)/39 - 91 * g = 42

1358 - 41 * g - 3499 * g = 1718

-3548 * g = -3670

g = 1

Now, we can substitute this value for g into the expression for t:

t = (147 - 41 * g)/39

t = (147 - 41 * 1)/39

t = 2

Therefore, the solution to the system of equations is t = 2 and g = 1.
### Answer: t = 2 and g = 1

Expected answer: {g: 12180/7403, t: 15099/7403}

Correct? No

🔗 Problem

Problem: Determine the values of c and o that satisfy the following system of equations: 6c + 55o = 112, and 55c - 48o = 36.

LLemma 34B:

 Reasoning: We can solve the system of equations by elimination.

Multiply the first equation by 55 and the second equation by 6.

6c + 55o = 112

55c - 48o = 36

6c + 55o = 112

330c - 288o = 216

6c + 55o = 112

330c - 288o = 216

336c = 328

c = <<328/336=0.9722222222222222>>0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

336c = 328

c = 0.9722222222222222

6c + 55o = 112

330c - 288o = 216

3

Expected answer: {c: 7356/3313, o: 5944/3313}

Correct? No

🔗 Problem

Problem: Determine the values of u and w that satisfy the following system of equations: 8w + 68u = 170, 71w - 94u = 8.

LLemma 34B:

 Reasoning: We can solve the system of equations by substitution.

We can solve the first equation for u:

 8w + 68u = 170, 
 68u = 170 - 8w, 
 u = (170 - 8w)/68.

Substituting this expression for u into the second equation, we get:

 71w - 94((170 - 8w)/68) = 8, 
 71w - (94*170 - 94*8w)/68 = 8, 
 71w - 15180 + 752w = 8*68, 
 823w = 8*68 + 15180, 
 823w = 544 + 15180, 
 823w = 15724, 
 w = 15724/823.

Substituting this expression for w into the first equation, we get:

 8(15724/823) + 68u = 170, 
 12580/823 + 68u = 170, 
 68u = 170 - 12580/823, 
 68u = (170*823 - 12580)/823, 
 68u = (14019 - 12580)/823, 
 68u = 1439/823, 
 u = 1439/5414.

### Answer: u = 1439/5414, w = 15724/823

Expected answer: {u: 667/310, w: 459/155}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of r and f: 68*r + 8*f = 92 97*f + 38*r = 182

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

We can solve the first equation for r:

68*r + 8*f = 92
68*r = 92 - 8*f
r = (92 - 8*f)/68

Now we can substitute this expression for r into the second equation:

97*f + 38*(92 - 8*f)/68 = 182
97*f + 38*(92 - 8*f)/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 182
97*f + 38*92/68 - 38*8*f/68 = 1

Expected answer: {f: 2220/1573, r: 1867/1573}

Correct? No

🔗 Problem

Problem: Given the equations below, find the values of r and d: For the first equation, consider 67 apples, each worth d dollars, and 37 ragdolls, each worth r dollars. If the total value of all these items is $50, you can represent this situation with the equation 67d - 37r = 50. In another case, consider 39 ragdolls, each worth r dollars, and 21 apples, each worth d dollars. If the total value of all these items is $16, you can also represent this situation with the equation 39r - 21d = 16. From these two equations, find the values of d (the cost of each apple) and r (the cost of each ragdoll).

LLemma 34B:

 Reasoning:

The first equation is 67d - 37r = 50.

The second equation is 39r - 21d = 16.

We can solve this system of equations by substitution.

We can solve the first equation for d:

67d - 37r = 50

67d = 50 + 37r

d = (50 + 37r)/67

We can substitute this expression for d into the second equation:

39r - 21((50 + 37r)/67) = 16

39r - (21(50)/67 + 21(37r)/67) = 16

39r - (1050/67 + 757r/67) = 16

39r - 1050/67 - 757r/67 = 16

-718r/67 - 1050/67 = 16

-718r - 1050 = 16(67)

-718r - 1050 = 1072

-718r = 1072 + 1050

-718r = 2122

r = -2122/-718

r = 3

We can substitute this value for r into the first equation to find d:

67d - 37(3) = 50

67d - 111 = 50

67d = 50 + 111

67d = 161

d = 161/67

d = 2.4

The value of d is 2.4, and the value of r is 3.

### Answer: d = 2.4, r = 3

Expected answer: {d: 1271/918, r: 1061/918}

Correct? No

🔗 Problem

Problem: To find the values of x and a, solve the following system of simultaneous linear equations: First equation: 163 equals 50 times x plus a Second equation: 24 equals 98 times x minus 84 times a.

LLemma 34B:

 Reasoning: First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a.

First equation: 163 equals 50 times x plus a
Second equation: 24 equals 98 times x minus 84 times a

Expected answer: {a: 7387/2149, x: 6858/2149}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of p and b: 67 * p + 18 * b = 110 82 * b - 44 * p = 58.

LLemma 34B:

 Reasoning:
We can solve this system of equations by elimination.

First, we multiply the first equation by 44 and the second equation by 18 to get:

2798 * p + 792 * b = 4840
1476 * b - 832 * p = 1064

Then, we add the two equations to get:

1476 * b + 792 * b = 4840 + 1064
2268 * b = 5904
b = 2.61

Now, we can plug in b = 2.61 into the first equation to get:

67 * p + 18 * 2.61 = 110
67 * p + 46.98 = 110
67 * p = 63.02
p = 0.94

### Answer: p = 0.94, b = 2.61

Expected answer: {b: 4363/3143, p: 3988/3143}

Correct? No

🔗 Problem

Problem: Determine the values of c and e from the following simultaneous equations: The difference between 63 times c and 36 times e equals 27, and 8 times c added to 32 times e equals 69.

LLemma 34B:

 Reasoning: 63c-36e = 27 and 8c+32e = 69.

63c-36e = 27
8c+32e = 69

Multiply the first equation by 4.

252c-144e = 108
8c+32e = 69

Subtract the second equation from the first equation.

244c = 41
c = <<244/244=1>>1

Substitute c = 1 into the first equation.

63(1)-36e = 27
63-36e = 27
36e = 36
e = <<36/36=1>>1

c = 1 and e = 1
### Answer: c = 1 and e = 1

Expected answer: {c: 93/64, e: 459/256}

Correct? No

🔗 Problem

Problem: Solve the following system of linear equations to find the values of x and p: 26 * x + 29 * p = 107 61 * x - 51 * p = 4

LLemma 34B:

 Reasoning:

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x + 29 * p = 107 

61 * x - 51 * p = 4

26 * x

Expected answer: {p: 6423/3095, x: 5573/3095}

Correct? No

🔗 Problem

Problem: Find the values for g and l from the system of equations below. The first equation is: ((29 * l) + (17 * g)) = 68. The second equation is: ((31 * g) - (10 * l)) = 17.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

We can solve the first equation for l:

((29 * l) + (17 * g)) = 68

((29 * l) + (17 * g) - (17 * g)) = 68 - (17 * g)

((29 * l) - (17 * g)) = 68 - (17 * g)

((29 * l) - (17 * g))/(29) = (68 - (17 * g))/(29)

l = (68 - (17 * g))/(29)

We can substitute this expression for l into the second equation:

((31 * g) - (10 * l)) = 17

((31 * g) - (10 * ((68 - (17 * g))/(29)))) = 17

((31 * g) - ((10 * (68 - (17 * g)))/(29))) = 17

((31 * g) - ((10 * 68 - (10 * (17 * g)))/(29))) = 17

((31 * g) - ((10 * 68)/(29) - (10 * (17 * g))/(29))) = 17

((31 * g) - (10 * 68)/(29) + (10 * (17 * g))/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29)) = 17

((31 * g) - (10 * 68)/(29) + (10 * 17 * g)/(29

Expected answer: {g: 1173/1069, l: 1819/1069}

Correct? No

🔗 Problem

Problem: Given the following system of equations, what are the values for a and c? 33*a - 54*c = 20 24*a - 26*c = 29.

LLemma 34B:

 Reasoning: We can solve this system of equations by elimination.

We can eliminate the variable c by multiplying the first equation by 26 and the second equation by 54.

26*33*a - 26*54*c = 26*20

54*24*a - 54*26*c = 54*29

1018*a - 1364*c = 520

1224*a - 1364*c = 1514

-106*a = -914

a = <<-914/-106=-8.6>>-8.6

We can now substitute a = -8.6 into the first equation to solve for c.

33*(-8.6) - 54*c = 20

-282.8 - 54*c = 20

-54*c = 282.8 + 20

-54*c = 302.8

c = <<-302.8/-54=-5.6>>-5.6

### Answer: a = -8.6, c = -5.6

Expected answer: {a: 523/219, c: 159/146}

Correct? No

🔗 Problem

Problem: Kat found herself stuck solving the following system of equations with two variables, d and j. Can you help her resolve it? 71d + 9j = 132 43j - 84d = 91.

LLemma 34B:

 Reasoning: We can solve this system of equations by elimination.

We can eliminate the d variable by multiplying the first equation by 84 and the second equation by 71.

71d + 9j = 132
43j - 84d = 91

84(71d + 9j) = 84(132)
71(43j - 84d) = 71(91)

5744d + 756j = 11008
3013j - 5956d = 6477

5744d + 756j = 11008
3013j - 5956d = 6477

15077j = 17485

j = <<15077/17485=0.86>>0.86

We can now substitute this value for j into the first equation to find d.

71d + 9(0.86) = 132
71d + 7.64 = 132
71d = 124.36
d = <<124.36/71=1.75>>1.75

### Answer: d = 1.75, j = 0.86

Expected answer: {d: 4857/3809, j: 17549/3809}

Correct? No

🔗 Problem

Problem: Determine the values of o and n by solving this system of equations: (81 * o) + (26 * n) = 163 (87 * n) + (23 * o) = 143.

LLemma 34B:

 Reasoning:

(81 * o) + (26 * n) = 163
(87 * n) + (23 * o) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163
(23 * o) + (87 * n) = 143

(81 * o) + (26 * n) = 163

Expected answer: {n: 7834/6449, o: 10463/6449}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for w and s: 46 * s - 61 * w = 2 61 * s + 67 * w = 178.

LLemma 34B:

 Reasoning:

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s - 61 * w = 2 
61 * s + 67 * w = 178.

46 * s

Expected answer: {s: 10992/6803, w: 8066/6803}

Correct? No

🔗 Problem

Problem: In the following system of equations, calculate the values of i and k. System of equations: 51*k - 8*i = 86 39*i + 8*k = 193.

LLemma 34B:

 Reasoning:
51*k - 8*i = 86
39*i + 8*k = 193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k - 8*i = 86
-39*i - 8*k = -193

51*k

Expected answer: {i: 9155/2053, k: 4898/2053}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of l and m: 26m + 17l = 146 93m + l = 126

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

First, we solve the second equation for l:

l = 126 - 93m

Then, we substitute this expression for l into the first equation:

26m + 17(126 - 93m) = 146

We can now solve for m:

26m + 2098 - 1551m = 146

-1295m = -1652

m = <<-1652/-1295=-1.27>>-1.27

We can now use this value of m to find l:

l = 126 - 93m

l = 126 - 93(-1.27)

l = <<126-93*-1.27=194.1>>194.1

### Answer: l = 194.1, m = -1.27

Expected answer: {l: 10302/1555, m: 1996/1555}

Correct? No

🔗 Problem

Problem: Determine the values of 'h' and 'f' by solving the following system of equations: 1) (8 * f) + (39 * h) = 66 2) (29 * f) + (46 * h) = 119

LLemma 34B:

 Reasoning:

1) (8 * f) + (39 * h) = 66

2) (29 * f) + (46 * h) = 119

Solve for 'h' in the first equation:

(8 * f) + (39 * h) = 66

(39 * h) = 66 - (8 * f)

h = (66 - (8 * f)) / 39

Substitute (66 - (8 * f)) / 39 for 'h' in the second equation:

(29 * f) + (46 * ((66 - (8 * f)) / 39)) = 119

(29 * f) + ((46 * (66 - (8 * f))) / 39) = 119

(29 * f) + ((46 * 66) / 39) - ((46 * (8 * f)) / 39) = 119

(29 * f) + ((46 * 66) / 39) - ((46 * 8) * f) / 39 = 119

(29 * f) + (1388 / 39) - (368 * f) / 39 = 119

(29 * f) - (368 * f) / 39 + (1388 / 39) = 119

((29 * 39 * f) - (368 * f) + (1388 / 39)) / 39 = 119

((1061 * f) - (368 * f) + (1388 / 39)) / 39 = 119

((1061 * f) - (368 * f)) / 39 + (1388 / 39) = 119

((1061 - 368) * f) / 39 + (1388 / 39) = 119

(693 * f) / 39 + (1388 / 39) = 119

(693 * f) / 39 + (1388 / 39) = 119

(693 * f + 1388) / 39 = 119

693 * f + 1388 = 119 * 39

693 * f + 1388 = 4761

693 * f = 4761 - 1388

693 * f = 3373

f = 3373 / 693

f = 4.8

Substitute 4.8 for 'f' in the first equation:

(8 * 4.8) + (39 * h) = 66

38.4 + (39 * h) = 66

39 * h = 66 - 38.4

39 * h = 27.6

h = 27.6 / 39

h = 0.7

### Answer: h = 0.7, f = 4.8

Expected answer: {f: 1605/763, h: 962/763}

Correct? No

🔗 Problem

Problem: Find the values of k and b that satisfy the following system of equations: 22 * b + 23 * k = 109 and 62 * k - 69 * b = 14.

LLemma 34B:

 Reasoning: We can solve the system of equations by substitution. We can solve the first equation for k: k = (109 - 23 * b)/22. We can substitute this expression for k into the second equation: 62 * ((109 - 23 * b)/22) - 69 * b = 14. We can solve this equation for b: b = 1. We can substitute this value for b into the first equation to find k: k = (109 - 23 * 1)/22 = 4.
### Answer: k = 4, b = 1

Expected answer: {b: 6436/2951, k: 7829/2951}

Correct? No

🔗 Problem

Problem: Solve the following system of linear equations for the values of m and s: 1. 84m - 55s = 1 2. 63m - 2s = 98.

LLemma 34B:

 Reasoning:

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1. 84m - 55s = 1
2. 63m - 2s = 98.

1.

Expected answer: {m: 1796/1099, s: 389/157}

Correct? No

🔗 Problem

Problem: Given the following system of equations, find the values of b and k: 1. (6 * b) + (5 * k) = 105 2. (95 * k) - (51 * b) = 67.

LLemma 34B:

 Reasoning:

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5 * k) = 105
2. (95 * k) - (51 * b) = 67.

1. (6 * b) + (5

Expected answer: {b: 1928/165, k: 1919/275}

Correct? No

🔗 Problem

Problem: Determine the values of d and u from the following pair of simultaneous linear equations: 33d + 62u = 114 and 32u + 40d = 83.

LLemma 34B:

 Reasoning: 

33d + 62u = 114 and
32u + 40d = 83.

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 114
32u + 40d = 83

33d + 62u = 1

Expected answer: {d: 749/712, u: 1821/1424}

Correct? No

🔗 Problem

Problem: There are two equations below that contain the variables c and p. Can you solve this system of equations to find the values of c and p? 5 * c + 28 * p = 102 20 * c - 67 * p = 13

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

We can solve the first equation for c:

5 * c + 28 * p = 102
5 * c = 102 - 28 * p
c = (102 - 28 * p)/5

We can substitute this expression for c into the second equation:

20 * c - 67 * p = 13
20 * ((102 - 28 * p)/5) - 67 * p = 13
20 * (102 - 28 * p)/5 - 67 * p = 13
20 * (102 - 28 * p) - 67 * p * 5 = 13 * 5
20 * (102 - 28 * p) - 67 * p * 5 = 65
20 * (102 - 28 * p) - 335 * p = 65
20 * (102 - 28 * p) = 65 + 335 * p
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (102 - 28 * p) = 335 * p + 65
20 * (10

Expected answer: {c: 7198/895, p: 395/179}

Correct? No

🔗 Problem

Problem: Given the following system of linear equations, determine the value of r and q. The system of equations is: 58 * r + 12 * q = 147 97 * q - 76 * r = 76.

LLemma 34B:

 Reasoning: We can solve this system of equations by elimination.

We can eliminate the variable q by multiplying the first equation by 97 and the second equation by 12.

97 * 58 * r + 97 * 12 * q = 97 * 147
12 * 97 * q - 12 * 76 * r = 12 * 76

We can then subtract the second equation from the first equation.

97 * 58 * r + 97 * 12 * q - (12 * 97 * q - 12 * 76 * r) = 97 * 147 - 12 * 76

Simplifying, we get:

97 * 58 * r + 97 * 12 * q - 12 * 97 * q + 12 * 76 * r = 97 * 147 - 12 * 76

We can then factor out the variable r.

97 * 58 * r + 97 * 12 * q - 12 * 97 * q + 12 * 76 * r = 97 * 147 - 12 * 76

We can then factor out the variable q.

97 * 58 * r + 97 * 12 * q - 12 * 97 * q + 12 * 76 * r = 97 * 147 - 12 * 76

We can then factor out the constant term.

97 * 58 * r + 97 * 12 * q - 12 * 97 * q + 12 * 76 * r = 97 * 147 - 12 * 76

We can then simplify the equation.

97 * 58 * r + 97 * 12 * q - 12 * 97 * q + 12 * 76 * r = 97 * 147 - 12 * 76

We can then solve for the variable r.

97 * 58 * r + 97 * 12 * q - 12 * 97 * q + 12 * 76 * r = 97 * 147 - 12 * 76

We can then solve for the variable q.

97 * 58 * r + 97 * 12 * q - 12 * 97 * q + 12 * 76 * r = 97 * 147 - 12 * 76

We can then substitute the values of r and q into the original system of equations to check our answer.

58 * r + 12 * q = 147
97 * q - 76 * r = 76

We can then solve for the variable r.

58 * r + 12 * q = 147
97 * q - 76 * r = 76

We can then solve for the variable q.

58 * r + 12 * q = 147
97 * q - 76 * r = 76

We can then substitute the values of r and q into the original system of equations to check our answer.

58 * r + 12 * q = 147
97 * q - 76 * r = 76

We can then solve for the variable r.

58 * r + 12 * q = 147
97 * q - 76 * r = 76

We can then solve for the variable q.

58 * r + 12 * q = 147
97 * q - 76 * r = 76

We can then substitute the values of r and q into the original system of equations to check our answer.

58 * r + 12 * q = 147
97 * q - 76 * r = 76

We can then solve for the variable r.

58 * r + 12

Expected answer: {q: 7790/3269, r: 13347/6538}

Correct? No

🔗 Problem

Problem: Resolve the provided system of simultaneous linear equations for v and k: 47 * v - 3 * k = 10 73 * v + 2 * k = 128.

LLemma 34B:

 Reasoning:

We can solve this system of equations by elimination.

First, we multiply the first equation by 2 to get:

94 * v - 6 * k = 20

Then, we add the first equation to the second equation to get:

166 * v = 148

Finally, we divide both sides by 166 to get:

v = <<148/166=0.89>>0.89

Now, we can plug in this value for v into either of the original equations to solve for k.

If we plug in v = 0.89 into the first equation, we get:

47 * 0.89 - 3 * k = 10

39.93 - 3 * k = 10

-3 * k = 10 - 39.93

-3 * k = -29.93

k = <<-29.93/-3=-9.97>>-9.97

So, the solution to the system of equations is v = 0.89 and k = -9.97.

### Answer: v = 0.89, k = -9.97

Expected answer: {k: 5286/313, v: 404/313}

Correct? No

🔗 Problem

Problem: You are given the following system of equations: The result of 89 multiplied by p minus 41 multiplied by q equals 60. The result of 27 multiplied by p plus 91 multiplied by q equals 124. What are the values of p and q?

LLemma 34B:

 Reasoning:
We can solve this system of equations by substitution.
We can solve the first equation for p:
p = <<60+41q/89>>60+41q/89
We can substitute this expression for p into the second equation:
27(<<60+41q/89>>60+41q/89) + 91q = 124
We can simplify this equation:
<<27(60+41q/89)+91q=124>>27(60+41q/89)+91q=124
<<27(60)+27(41q/89)+91q=124>>27(60)+27(41q/89)+91q=124
<<1620+27(41q/89)+91q=124>>1620+27(41q/89)+91q=124
<<1620+27(41q)/89+91q=124>>1620+27(41q)/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/89+91q=124
<<1620+1127q/89+91q=124>>1620+1127q/8

Expected answer: {p: 5272/4603, q: 4708/4603}

Correct? No

🔗 Problem

Problem: Find the values of u and d that make these equations true: The first equation is: (88 * u) - (96 * d) = 12 The second equation is: (27 * u) + (36 * d) = 71

LLemma 34B:

 Reasoning: We can solve the first equation for u:

(88 * u) - (96 * d) = 12

(88 * u) = 12 + (96 * d)

u = (12 + (96 * d)) / 88

We can solve the second equation for d:

(27 * u) + (36 * d) = 71

(36 * d) = 71 - (27 * u)

d = (71 - (27 * u)) / 36

We can substitute the expression for d into the first equation:

(88 * u) - (96 * d) = 12

(88 * u) - (96 * ((71 - (27 * u)) / 36)) = 12

(88 * u) - ((71 * 96) - ((27 * 96) * u)) / 36 = 12

(88 * u) - ((71 * 96) / 36) + ((27 * 96) * u) / 36 = 12

((88 * 36) * u) - ((71 * 96) / 36) + ((27 * 96) * u) = (12 * 36)

((3216 * u) - (2176 / 36) + (8232 * u)) = 432

((3216 + 8232) * u) - (2176 / 36) = 432

((11448 * u) - (2176 / 36)) = 432

((11448 * u) - (2176 / 36)) / (11448 / 36) = (432 / (11448 / 36))

u = 1

We can substitute the expression for u into the second equation:

(27 * u) + (36 * d) = 71

(27 * 1) + (36 * d) = 71

27 + (36 * d) = 71

(36 * d) = 71 - 27

(36 * d) = 44

d = 44 / 36

d = 11 / 9

### Answer: u = 1, d = 11/9

Expected answer: {d: 1481/1440, u: 151/120}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of f and n: 20 * n - 18 * f = 9 and 3 * n - 2 * f = 70.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
We can solve the first equation for f:
20 * n - 18 * f = 9
-18 * f = 9 - 20 * n
f = (9 - 20 * n)/(-18)
f = <<(9-20*n)/(-18)=(9-20*n)/(-18)>>(9-20*n)/(-18)
We can now substitute this expression for f into the second equation:
3 * n - 2 * f = 70
3 * n - 2 * ((9 - 20 * n)/(-18)) = 70
3 * n - (18 * (9 - 20 * n))/(-18) = 70
3 * n - (18 * 9 - 18 * 20 * n)/(-18) = 70
3 * n - (162 - 360 * n)/(-18) = 70
3 * n - 162/(-18) + 360 * n/(-18) = 70
(363 * n)/(-18) - 162/(-18) = 70
(363 * n)/(-18) + 162/18 = 70
(363 * n + 162)/(-18) = 70
363 * n + 162 = -1260
363 * n = -1260 - 162
363 * n = -1422
n = <<-1422/363=-1422/363>>-1422/363
We can now substitute this value for n into the expression for f:
f = (9-20*n)/(-18)
f = (9-20*(-1422/363))/(-18)
f = <<9-20*(-1422/363)=9-20*(-1422/363)>>9-20*(-1422/363)
### Answer: f = <<9-20*(-1422/363)=9-20*(-1422/363)>>9-20*(-1422/363), n = <<-1422/363=-1422/363>>-1422/363

Expected answer: {f: 1373/14, n: 621/7}

Correct? No

🔗 Problem

Problem: Determine the values of j and l from the following system of equations: 7 * l + 97 * j = 133 22 * j + 37 * l = 76.

LLemma 34B:

 Reasoning: 
7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l + 97 * j = 133 
22 * j + 37 * l = 76.

7 * l +

Expected answer: {j: 1463/1145, l: 1482/1145}

Correct? No

🔗 Problem

Problem: Determine the values of d and f from the following system of equations: 21d - 46f = 53 8d + 84f = 133.

LLemma 34B:

 Reasoning:

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f = 53 
8d + 84f = 133.

21d - 46f

Expected answer: {d: 5285/1066, f: 2369/2132}

Correct? No

🔗 Problem

Problem: Determine the values of u and w that satisfy the following system of equations: 74u + 11w = 116 66u - 68w = 21.

LLemma 34B:

 Reasoning: We can solve this system of equations by elimination.

Multiply the first equation by 68 and the second equation by 11.

74u + 11w = 116
66u - 68w = 21

68(74u + 11w) = 68(116)
11(66u - 68w) = 11(21)

4832u + 752w = 7744
726u - 758w = 231

4832u + 752w = 7744
726u - 758w = 231

1504u = 10033

1504u = 10033

u = <<10033/1504=6.67>>6.67

Substitute u = 6.67 into the first equation.

74(6.67) + 11w = 116

470.28 + 11w = 116

11w = 68.72

w = <<68.72/11=6.25>>6.25

### Answer: u = 6.67, w = 6.25

Expected answer: {u: 8119/5758, w: 3051/2879}

Correct? No

🔗 Problem

Problem: Find the values of f and j that will satisfy the following system of equations: 76 * f - 42 * j = 96 47 * j + 34 * f = 136.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
We can solve the first equation for f:
76 * f - 42 * j = 96
76 * f = 96 + 42 * j
f = (96 + 42 * j)/76
We can substitute this expression for f into the second equation:
47 * j + 34 * f = 136
47 * j + 34 * ((96 + 42 * j)/76) = 136
47 * j + (34 * 96)/76 + (34 * 42 * j)/76 = 136
47 * j + 4 * 96 + 6 * 42 * j = 136 * 76
47 * j + 384 + 252 * j = 10368
72 * j + 384 = 10368
72 * j = 10368 - 384
72 * j = 9984
j = 9984/72
j = 139
We can substitute this value for j into the first equation to find f:
76 * f - 42 * j = 96
76 * f - 42 * 139 = 96
76 * f - 5748 = 96
76 * f = 96 + 5748
76 * f = 5844
f = 5844/76
f = 76
### Answer: f = 76, j = 139

Expected answer: {f: 1278/625, j: 884/625}

Correct? No

🔗 Problem

Problem: Consider the following system of equations. Find the values of u and e: 68u + 32e = 174 63e - 69u = 1.

LLemma 34B:

 Reasoning: We can solve this system of equations by elimination.

We can eliminate the u term by multiplying the first equation by 69 and the second equation by 32.

69(68u + 32e) = 69(174)
32(63e - 69u) = 32(1)

We can then add the equations together to get:

69(68u + 32e) + 32(63e - 69u) = 69(174) + 32(1)

69(68u) + 69(32e) + 32(63e) - 32(69u) = 69(174) + 32(1)

4622u + 2402e + 2016e - 2112u = 11986 + 32

2510u + 4418e = 12018

We can now solve for u by multiplying both sides by 2510.

2510(2510u + 4418e) = 2510(12018)

6295000u + 11253000e = 30045000

6295000u = 30045000 - 11253000e

6295000u = 18792000 - 11253000e

6295000u = 18792000 - 11253000e

6295000u = 75387000e

u = 75387000e/6295000

u = 12e/13

We can now solve for e by multiplying both sides by 13.

13(2510u + 4418e) = 13(12018)

32730u + 57504e = 158234

32730(12e/13) + 57504e = 158234

39396e + 57504e = 158234

96890e = 158234

e = 158234/96890

e = 16/9

### Answer: u = 12e/13 and e = 16/9

Expected answer: {e: 6037/3246, u: 5465/3246}

Correct? No

🔗 Problem

Problem: Find the values of p and n that satisfy the following system of linear equations: 57p + 4n = 129 and 24p + 39n = 154.

LLemma 34B:

 Reasoning: We can solve this system of linear equations by elimination.

Multiply the first equation by -3 and the second equation by 5.

-171p - 12n = -387 and
120p + 195n = 770

Add the two equations.

-51p + 73n = 383

Divide both sides by 51.

p = <<383/73=5.3>>5.3

Substitute p = 5.3 into the first equation.

57(5.3) + 4n = 129

Simplify.

293.1 + 4n = 129

Subtract 293.1 from both sides.

4n = -164.1

Divide both sides by 4.

n = <<-164.1/4=-41.025>>-41.025

### Answer: p = 5.3 and n = -41.025

Expected answer: {n: 1894/709, p: 4415/2127}

Correct? No

🔗 Problem

Problem: Determine the values of y and z from the given system of equations: 66 * z - 44 * y = 32 60 * y + 14 * z = 116.

LLemma 34B:

 Reasoning:

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44 * y = 32 
60 * y + 14 * z = 116.

66 * z - 44

Expected answer: {y: 901/572, z: 439/286}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the variables t and h: The first equation is 83 * t - 58 * h = 45. The second equation is 69 * h + 11 * t = 124.

LLemma 34B:

 Reasoning:

The first equation is 83 * t - 58 * h = 45.
The second equation is 69 * h + 11 * t = 124.

We can solve the first equation for t:

83 * t - 58 * h = 45
83 * t = 45 + 58 * h
t = (45 + 58 * h)/83

We can substitute this expression for t into the second equation:

69 * h + 11 * t = 124
69 * h + 11 * ((45 + 58 * h)/83) = 124
69 * h + (45 + 58 * h)/83 = 124
69 * h + 45/83 + 58 * h/83 = 124
69 * h + 45/83 + 7 * h = 124
69 * h + 7 * h = 124 - 45/83
76 * h = 124 - 45/83
h = (124 - 45/83)/76

We can substitute this expression for h into the first equation:

83 * t - 58 * h = 45
83 * t - 58 * ((124 - 45/83)/76) = 45
83 * t - (124 - 45/83)/76 = 45
83 * t - 124/76 + 45/76 = 45
83 * t - 124/76 + 3 = 45
83 * t - 124/76 = 42
83 * t = 42 + 124/76
t = (42 + 124/76)/83

### Answer: t = (42 + 124/76)/83, h = (124 - 45/83)/76

Expected answer: {h: 9797/6365, t: 10297/6365}

Correct? No

🔗 Problem

Problem: Given the system of equations ((79 * h) - (61 * o)) = 9 and ((16 * h) - (12 * o)) = 9, what are the values of o and h?

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.
((79 * h) - (61 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9
((16 * h) - (12 * o)) = 9

Expected answer: {h: 63/4, o: 81/4}

Correct? No

🔗 Problem

Problem: Solve for variables s and y when the following system of equations is satisfied: 4 * y + 56 * s = 139 65 * y - 90 * s = 16

LLemma 34B:

 Reasoning:

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y + 56 * s = 139 

65 * y - 90 * s = 16

4 * y +

Expected answer: {s: 8971/4000, y: 6703/2000}

Correct? No

🔗 Problem

Problem: Solve the following pair of simultaneous equations: 42 * d - 4 * z = 75 40 * d + 45 * z = 162 Find the values of d and z.

LLemma 34B:

 Reasoning:

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42 * d - 4 * z = 75
40 * d + 45 * z = 162

42

Expected answer: {d: 4023/2050, z: 1902/1025}

Correct? No

🔗 Problem

Problem: Determine the values of 'a' and 'o' from the following system of equations: (42 * o) + (24 * a) = 142 (42 * a) + (6 * o) = 75.

LLemma 34B:

 Reasoning:

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) = 75

(42 * o) + (24 * a) = 142
(42 * a) + (6 * o) =

Expected answer: {a: 383/270, o: 347/135}

Correct? No

🔗 Problem

Problem: Given the following system of equations, find the values of p and r: 39*r - 2*p = 45 and 16*p - 84*r = 36.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution. We can solve the first equation for p: p = <<45/39+2=5>>5. We can substitute this value for p into the second equation: 16*5 - 84*r = 36. We can solve this equation for r: r = <<36/16*5-84=1>>1.
### Answer: p = 5, r = 1

Expected answer: {p: 216/19, r: 33/19}

Correct? No

🔗 Problem

Problem: Given the following system of equations, solve for the values of 'd' and 'w': 1. (23 * d) - (52 * w) = 7 2. (64 * w) - (8 * d) = 58

LLemma 34B:

 Reasoning:

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7
2. (64 * w) - (8 * d) = 58

1. (23 * d) - (52 * w) = 7

Expected answer: {d: 433/132, w: 695/528}

Correct? No

🔗 Problem

Problem: Solve the following system of equations for the values of n and z: (71 * z) + (60 * n) = 184 (52 * z) - (47 * n) = 19.

LLemma 34B:

 Reasoning: We can solve this system of equations by substitution.

First, we solve the first equation for n:

n = (184 - 71 * z) / 60

Then, we substitute this expression for n into the second equation:

(52 * z) - (47 * ((184 - 71 * z) / 60)) = 19

We can simplify this equation by multiplying both sides by 60:

(52 * z * 60) - (47 * (184 - 71 * z)) = 19 * 60

We can then expand the left-hand side of the equation:

(52 * z * 60) - (47 * 184) + (47 * 71 * z) = 19 * 60

We can then simplify the left-hand side of the equation by combining like terms:

(52 * z * 60) + (47 * 71 * z) - (47 * 184) = 19 * 60

We can then factor out the z term on the left-hand side of the equation:

z * (52 * 60 + 47 * 71) - (47 * 184) = 19 * 60

We can then solve for z by dividing both sides of the equation by (52 * 60 + 47 * 71):

z = (19 * 60 + (47 * 184)) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by expanding the numerator and denominator:

z = (19 * 60 + 47 * 184) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by combining like terms:

z = (19 * 60 + 47 * 184) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by factoring out the 19 and 47 terms:

z = (19 * (60 + 47 * 3)) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by expanding the numerator and denominator:

z = (19 * (60 + 47 * 3)) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by combining like terms:

z = (19 * (60 + 47 * 3)) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by factoring out the 19 and 47 terms:

z = (19 * (60 + 47 * 3)) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by expanding the numerator and denominator:

z = (19 * (60 + 47 * 3)) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by combining like terms:

z = (19 * (60 + 47 * 3)) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by factoring out the 19 and 47 terms:

z = (19 * (60 + 47 * 3)) / (52 * 60 + 47 * 71)

We can then simplify the right-hand side of the equation by expanding the numerator and denominator:

z = (19 * (60 + 47 * 3)) / (52 * 60 + 47 * 71)

We can then simplify the right

Expected answer: {n: 8219/6457, z: 9788/6457}

Correct? No

🔗 Problem

Problem: Given the following system of equations, find the values of e and z: 70 * e + 90 * z = 189 99 * z - 84 * e = 20

LLemma 34B:

 Reasoning:

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e + 90 * z = 189 
99 * z - 84 * e = 20

70 * e

Expected answer: {e: 1879/1610, z: 1234/1035}

Correct? No

🔗 Problem

Problem: Find the values of o and f that satisfy the following system of equations: 1) 26o - 44f = 95 2) 87f + 11o = 169.

LLemma 34B:

 Reasoning:

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 44f = 95
2) 87f + 11o = 169

1) 26o - 

Expected answer: {f: 3349/2746, o: 15701/2746}

Correct? No

🔗 Problem

Problem: Calculate the values of z and p using the following system of equations: 40*z - 20*p = 51 6*z + 58*p = 165.

LLemma 34B:

 Reasoning: 40*z - 20*p = 51
 6*z + 58*p = 165.

We can solve this system of equations by substitution.

We can solve the first equation for z:

40*z - 20*p = 51

40*z = 51 + 20*p

z = (51 + 20*p)/40

Now we can substitute this expression for z into the second equation:

6*z + 58*p = 165

6*(51 + 20*p)/40 + 58*p = 165

(6*51 + 6*20*p)/40 + 58*p = 165

(306 + 120*p)/40 + 58*p = 165

306 + 120*p + 2320*p = 6600

2440*p = 3534

p = 3534/2440

p = 1434/1220

p = 717/610

Now we can substitute this expression for p into the first equation to find z:

40*z - 20*p = 51

40*z - 20*(717/610) = 51

40*z - 1434/30.5 = 51

40*z - 46.68 = 51

40*z = 97.68

z = 97.68/40

z = 2.442

### Answer: z = 2.442, p = 717/610

Expected answer: {p: 3147/1220, z: 3129/1220}

Correct? No

🔗 Problem

Problem: Find the values of s and f from the given system of equations: (71 * s) - (89 * f) = 5 (3 * f) + (10 * s) = 93.

LLemma 34B:

 Reasoning:

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 93.

(71 * s) - (89 * f) = 5 
(3 * f) + (10 * s) = 

Expected answer: {f: 6553/1103, s: 8292/1103}

Correct? No