Common Core Standard 7.NS.A.2
This standard covers the following:
Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
Problem: Calculate the product of (29/2) and (19/28) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators. (29/2) * (19/28) = (29 * 19) / (2 * 28) Simplifying the multiplication: (29 * 19) / (2 * 28) = 551 / 56 We can check if this fraction can be simplified by looking for common factors in the numerator and denominator. In this case, there are no common factors other than 1. ### Answer: 551/56
Expected answer: 551/56
Correct? Yes
Problem: After finding the product of (29/2) and (19/28), multiply your result by (8/28). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We already know the product of (29/2) and (19/28) is 551/56. Now we need to multiply that by 8/28: (551/56) * (8/28) = (551 * 8) / (56 * 28) Simplifying the multiplication: (551 * 8) / (56 * 28) = 4408 / 1568 Now we need to simplify the fraction. Both 4408 and 1568 are divisible by 8: 4408 / 1568 = (4408/8) / (1568/8) = 551/196 We can further simplify by dividing both numerator and denominator by 7: 551/196 = (551/7) / (196/7) = 79/28 ### Answer: 79/28
Expected answer: 551/196
Correct? No
Problem: After finding the product of (29/2) and (19/28), reconsider the calculation using (19/14) instead of (19/28). Recalculate the product of (29/2) and (19/14) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's calculate the product of (29/2) and (19/14): (29/2) * (19/14) = (29 * 19) / (2 * 14) Simplifying the multiplication: (29 * 19) / (2 * 14) = 551 / 28 Now we can simplify the fraction by dividing both numerator and denominator by their greatest common factor, which is 1. ### Answer: 551/28
Expected answer: 551/28
Correct? Yes
Problem: Calculate the result of the following problem: multiply 7 by the result of dividing 27 by 12. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: First, we divide 27 by 12: 27/12 = 9/4. Then, we multiply 7 by the result: 7 * (9/4) = 63/4. ### Answer: 63/4
Expected answer: 63/4
Correct? Yes
Problem: Let's reconsider the previous question. Instead of multiplying 7 by the result of dividing 27 by 12, calculate the result when you multiply 7 by the division of 26 by 12. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: First, we divide 26 by 12: 26/12 = 13/6. Then, we multiply 7 by the result: 7 * (13/6) = 91/6. ### Answer: 91/6
Expected answer: 91/6
Correct? Yes
Problem: Susan has a recipe that calls for 30 parts of flour to 27 parts of water. If she decides to use 29 parts of flour instead, and she keeps the water proportion the same, how much water will she use? Calculate this using fraction multiplication: ((30 / 30) * (29 / 27)).
Gemini-1.5 Flash:
Reasoning: The fraction (30/30) represents the ratio of flour to flour, which is always 1. Multiplying this by (29/27) represents the ratio of the new amount of flour to the original amount of flour, which is then multiplied by the original amount of water (27 parts). So we get (30/30)*(29/27) * 27 = 29. ### Answer: 29
Expected answer: 29/27
Correct? No
Problem: Calculate the result of the following operation: ((24 / 22) * (24 / 17)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We can simplify the fractions first: * 24/22 simplifies to 12/11 * 24/17 stays as it is Now we multiply the simplified fractions: (12/11) * (24/17) = (12 * 24) / (11 * 17) = 288/187 This fraction cannot be further simplified. ### Answer: 288/187
Expected answer: 288/187
Correct? Yes
Problem: After finding the result of ((24 / 22) * (24 / 17)) in the previous problem, multiply the answer you found by (27 / 18). Write the result as a simplified fraction.
Gemini-1.5 Flash:
We already know ((24 / 22) * (24 / 17)) = 288/187. Now, we need to multiply this by (27/18). First, we simplify 27/18 to 9/6, and then to 3/2. Now, we multiply: (288/187) * (3/2) = (288 * 3) / (187 * 2) = 864 / 374 We can simplify this further by dividing both numerator and denominator by 2: 864 / 374 = (864/2) / (374/2) = 432/187 ### Answer: 432/187
Expected answer: 432/187
Correct? Yes
Problem: Since the previous problem had you evaluating ((24 / 22) * (24 / 17)), consider this change: What if instead of multiplying (24 / 22) by (24 / 17), you multiplied it by (24 / 9)? Calculate the result of ((24 / 22) * (24 / 9)) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's simplify the fractions first: * 24/22 simplifies to 12/11 * 24/9 simplifies to 8/3 Now, we multiply the simplified fractions: (12/11) * (8/3) = (12 * 8) / (11 * 3) = 96/33 This fraction can be further simplified by dividing both numerator and denominator by their greatest common factor, which is 3: 96/33 = (96/3) / (33/3) = 32/11 ### Answer: 32/11
Expected answer: 32/11
Correct? Yes
Problem: What is the result when you divide 25/4 by 16/6? Please write your answer as a simplified fraction.
Gemini-1.5 Flash:
Dividing by a fraction is the same as multiplying by the reciprocal of that fraction. The reciprocal of 16/6 is 6/16. Therefore, we have: (25/4) รท (16/6) = (25/4) * (6/16) Now, we can simplify by canceling common factors: (25/4) * (6/16) = (25 * 6) / (4 * 16) = (5 * 5 * 2 * 3) / (2 * 2 * 2 * 2 * 4) Canceling the common factor of 2: = (5 * 5 * 3) / (2 * 2 * 2 * 4) = 75 / 32 ### Answer: 75/32
Expected answer: 75/32
Correct? Yes
Problem: If the result of dividing 25/4 by 16/6 is multiplied by 19/6, what is the new result? Be sure to simplify your answer to lowest terms.
Gemini-1.5 Flash:
We already know that (25/4) รท (16/6) = 75/32. Now, we need to multiply this result by 19/6: (75/32) * (19/6) = (75 * 19) / (32 * 6) We can simplify by canceling common factors: (75 * 19) / (32 * 6) = (3 * 25 * 19) / (2 * 16 * 2 * 3) Canceling the common factor of 3: = (25 * 19) / (2 * 16 * 2) = 475 / 64 ### Answer: 475/64
Expected answer: 475/64
Correct? Yes
Problem: Following up from the previous question, consider the new scenario where instead of dividing 25/4 we are now dividing 9 by 16/6. What is the answer to this problem? Please simplify your final answer.
Gemini-1.5 Flash:
We're dividing 9 by 16/6. Remember, dividing by a fraction is the same as multiplying by its reciprocal. The reciprocal of 16/6 is 6/16. So we have: 9 รท (16/6) = 9 * (6/16) Now we simplify by multiplying and canceling common factors: 9 * (6/16) = (9 * 6) / 16 = (3 * 3 * 2 * 3) / (2 * 2 * 2 * 2) Canceling common factors of 2: = (3 * 3 * 3) / (2 * 2 * 2) = 27/8 ### Answer: 27/8
Expected answer: 27/8
Correct? Yes
Problem: Determine the result of the following: Multiply the fraction 3/7 by the fraction 26/6 and express your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (3/7) * (26/6) = (3 * 26) / (7 * 6) = 78/42 Now we simplify the fraction by finding the greatest common factor (GCD) of 78 and 42, which is 6: 78/42 = (6 * 13) / (6 * 7) = 13/7 ### Answer: 13/7
Expected answer: 13/7
Correct? Yes
Problem: In the previous question, you found the result of (3 / 7) * (26 / 6). Now, take that result and multiply it by the fraction 23/2. What's the result of this calculation, expressed as a simplified fraction?
Gemini-1.5 Flash:
We already know that (3/7) * (26/6) = 13/7. Now we need to multiply this by 23/2: (13/7) * (23/2) = (13 * 23) / (7 * 2) = 299/14 Since 299 and 14 share no common factors other than 1, the fraction is already simplified. ### Answer: 299/14
Expected answer: 299/14
Correct? Yes
Problem: In the previous problem, you multiplied the fraction 3/7 by the fraction 26/6. Now, let's change the fraction a bit. Instead of 3/7, use 7/7 (which is actually 1). Multiply this new fraction 7/7 by the same fraction 26/6. What is the result of this new calculation, expressed as a simplified fraction?
Gemini-1.5 Flash:
Multiplying any number by 1 does not change the number. In this case, we are multiplying 26/6 by 1 (which is represented as 7/7). (7/7) * (26/6) = (7 * 26) / (7 * 6) = 182/42 Now we simplify the fraction by finding the greatest common factor (GCD) of 182 and 42, which is 14: 182/42 = (14 * 13) / (14 * 3) = 13/3 ### Answer: 13/3
Expected answer: 13/3
Correct? Yes
Problem: Calculate the result of the expression (17 / 10) * (28 / 10) and write your answer in decimal form.
Gemini-1.5 Flash:
We first perform the divisions: 17/10 = 1.7 and 28/10 = 2.8. Then, we multiply these results: 1.7 * 2.8 = 4.76. ### Answer: 4.76
Expected answer: 119/25
Correct? Yes
Problem: Determine the value of the given expression: ((29 / 14) * (23 / 6))
Gemini-1.5 Flash:
First, we can simplify the expression by multiplying the numerators and denominators: (29 * 23) / (14 * 6) This gives us: 667 / 84 Now we can simplify this fraction further. Since both 667 and 84 are divisible by 7, we get: 95 / 12 This fraction cannot be simplified further. ### Answer: 95/12
Expected answer: 667/84
Correct? No
Problem: Calculate the answer for ((18 / 19) * (19 / 6)) and write the result as a simplified fraction.
Gemini-1.5 Flash:
We can simplify this expression by canceling out the common factors: * The 19 in the numerator of the first fraction cancels out with the 19 in the denominator of the second fraction. This leaves us with: * (18/1) * (1/6) Now, we multiply the numerators and the denominators: * (18 * 1) / (1 * 6) = 18/6 Finally, we simplify the fraction by dividing both numerator and denominator by their greatest common factor, which is 6: * 18/6 = 3/1 ### Answer: 3/1
Expected answer: 3
Correct? Yes
Problem: Calculate the result of the multiplication of the fraction 19/12 by 20/6. Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (19/12) * (20/6) = (19 * 20) / (12 * 6) Simplifying the multiplication: = 380 / 72 We can simplify this fraction by dividing both the numerator and denominator by their greatest common factor, which is 4: = (380/4) / (72/4) = 95 / 18 ### Answer: 95/18
Expected answer: 95/18
Correct? Yes
Problem: Taking the answer from the previous problem (19/12 * 20/6), multiply this result with itself. What is the resulting fraction when simplified?
Gemini-1.5 Flash:
We are asked to multiply the result of the previous problem (95/18) by itself: (95/18) * (95/18) = (95 * 95) / (18 * 18) Simplifying the multiplication: = 9025 / 324 This fraction cannot be simplified further as 9025 and 324 share no common factors other than 1. ### Answer: 9025/324
Expected answer: 9025/324
Correct? Yes
Problem: In the original problem, you multiplied the fractions 19/12 and 20/6. Now suppose you replace 19/12 with 10/12 and redo the calculation. What is the resulting fraction when it is simplified?
Gemini-1.5 Flash:
Let's replace 19/12 with 10/12 and multiply by 20/6: (10/12) * (20/6) = (10 * 20) / (12 * 6) Simplifying the multiplication: = 200 / 72 We can simplify this fraction by dividing both the numerator and denominator by their greatest common factor, which is 8: = (200/8) / (72/8) = 25 / 9 ### Answer: 25/9
Expected answer: 25/9
Correct? Yes
Problem: A cargo ship carries 28/21 of its capacity in the morning, and 22/4 of its capacity in the afternoon. If the cargo in the morning represents the load allocated to consumer goods and the cargo in the afternoon represents industrial supplies, what is the total fractional representation of these two types of cargo hauled in one day? Calculate ((28 / 21) * (22 / 4)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We need to calculate the total fractional representation of the cargo hauled in one day by adding the fractional representations of consumer goods and industrial supplies. ((28 / 21) * (22 / 4)) = (28 * 22) / (21 * 4) = (4 * 7 * 2 * 11) / (3 * 7 * 2 * 2) = (4 * 11) / (3 * 2) = 44/6 = 22/3 ### Answer: 22/3
Expected answer: 22/3
Correct? Yes
Problem: After calculating the total fractional representation of the cargo hauled in one day, suppose the ship needs to set aside 5/24 of this total fraction for an emergency supply run later in the week. What fraction of the overall cargo does this emergency supply run represent? To find this, calculate ((5 / 24) * your previous answer). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We need to find 5/24 of the total fractional representation of the cargo hauled in one day, which we previously calculated as 22/3. ((5/24) * (22/3)) = (5 * 22) / (24 * 3) = (5 * 11 * 2) / (12 * 2 * 3) = (5 * 11) / (12 * 3) = 55/36 ### Answer: 55/36
Expected answer: 55/36
Correct? Yes
Problem: After recalculating the cargo hauled in one day with the new total of 29/21 representing the consumer goods, how does this change the overall cargo hauled in one day? If the cargo in the morning now represents 29/21 of its capacity, and the cargo in the afternoon still represents 22/4 of its capacity for industrial supplies, what is the new total fractional representation of these two types of cargo hauled in one day? Calculate ((29 / 21) * (22 / 4)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We now have the new fractional representation of consumer goods as 29/21 and the industrial supplies as 22/4. To find the total fractional representation of cargo hauled in one day, we need to add these two fractions: ((29 / 21) * (22 / 4)) = (29 * 22) / (21 * 4) = (29 * 11) / (21 * 2) = 319/42. ### Answer: 319/42
Expected answer: 319/42
Correct? Yes
Problem: Determine the result of the following mathematical expression: (16 / 4) / (24 / 21). Write your answer as a simplified fraction or decimal.
Gemini-1.5 Flash:
Let's break down the expression step-by-step: 1. **Simplify the division within the parentheses:** - (16 / 4) = 4 - (24 / 21) = 8/7 2. **Perform the division of the simplified results:** - 4 / (8/7) 3. **Dividing by a fraction is the same as multiplying by its reciprocal:** - 4 * (7/8) = 28/8 4. **Simplify the fraction:** - 28/8 = 7/2 ### Answer: 7/2 or 3.5
Expected answer: 7/2
Correct? Yes
Problem: After you've calculated the result of the previous problem, which is (16 / 4) / (24 / 21), multiply your answer by (5 / 13). What is the final result in its simplified form?
Gemini-1.5 Flash:
We know the result of (16 / 4) / (24 / 21) is 7/2. Now, let's multiply this by (5/13): (7/2) * (5/13) = (7 * 5) / (2 * 13) = 35/26 ### Answer: 35/26
Expected answer: 35/26
Correct? Yes
Problem: Suppose you made a mistake when performing the previous calculation. Instead of (16 / 4) / (24 / 21), you should have calculated (16 / 4) / 3. What would the correct answer be if the original problem used this correct operation instead?
Gemini-1.5 Flash:
Let's calculate the correct answer using the corrected expression (16 / 4) / 3: 1. **Simplify the division within the parentheses:** - (16 / 4) = 4 2. **Perform the division:** - 4 / 3 ### Answer: 4/3
Expected answer: 4/3
Correct? Yes
Problem: Calculate the product of the fractions 5/27 and 15/2. Write your answer in the simplest form.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators. (5/27) * (15/2) = (5 * 15) / (27 * 2) = 75/54 Now we can simplify the fraction by dividing both numerator and denominator by their greatest common factor, which is 3: 75/54 = (75/3) / (54/3) = 25/18 ### Answer: 25/18
Expected answer: 25/18
Correct? Yes
Problem: After finding the product of the fractions 5/27 and 15/2, take that result and multiply it by itself. What is the result when you write it in simplest form?
Gemini-1.5 Flash:
We already know that the product of 5/27 and 15/2 is 25/18. To multiply this by itself, we square it: (25/18) * (25/18) = (25 * 25) / (18 * 18) = 625/324 This fraction is already in its simplest form, as 625 and 324 share no common factors other than 1. ### Answer: 625/324
Expected answer: 625/324
Correct? Yes
Problem: After previously calculating the product of the fractions 5/27 and 15/2, what if the original number of the numerator in the first fraction was 24 instead of 5? Calculate the new product of the fractions 24/27 and 15/2 and write your answer in simplest form.
Gemini-1.5 Flash:
The new product is (24/27) * (15/2). To simplify the calculation, we can cancel out common factors before multiplying. * 24 and 2 share a common factor of 2. * 27 and 15 share a common factor of 3. After canceling out these factors, we get: (24/27) * (15/2) = (8/9) * (5/1) = 40/9 ### Answer: 40/9
Expected answer: 20/3
Correct? No
Problem: Calculate the result of the following product of fractions: (15 / 13) * (19 / 7). Make sure to write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (15 / 13) * (19 / 7) = (15 * 19) / (13 * 7) = 285 / 91 Now we need to simplify this fraction. The greatest common factor of 285 and 91 is 13. Dividing both the numerator and the denominator by 13, we get: 285 / 91 = (285 / 13) / (91 / 13) = 21 / 7 Finally, we can simplify further by dividing both the numerator and the denominator by 7: 21 / 7 = (21 / 7) / (7 / 7) = 3 / 1 = 3 ### Answer: 3
Expected answer: 285/91
Correct? No
Problem: Calculate the product of the fractions 23/22 and 27/20. Express your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (23/22) * (27/20) = (23 * 27) / (22 * 20) Now we simplify: (23 * 27) / (22 * 20) = 621 / 440 We can't simplify this fraction any further because 621 and 440 don't share any common factors other than 1. ### Answer: 621/440
Expected answer: 621/440
Correct? Yes
Problem: Calculate the result of the following operation: (12 / 25) * (20 / 4). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to simplify the operation: 1. **Simplify the fractions:** * 12/25 is already in its simplest form. * 20/4 can be simplified to 5/1. 2. **Multiply the simplified fractions:** * (12/25) * (5/1) = (12 * 5) / (25 * 1) = 60/25 3. **Simplify the resulting fraction:** * Both 60 and 25 are divisible by 5. * 60/5 = 12 and 25/5 = 5 * So, 60/25 simplifies to 12/5 ### Answer: 12/5
Expected answer: 12/5
Correct? Yes
Problem: After finding the result of (12 / 25) * (20 / 4), now multiply this result by (17 / 17). Report your final answer as a simplified fraction.
Gemini-1.5 Flash:
We know that (12/25) * (20/4) simplifies to 12/5. Now, we need to multiply this by (17/17): (12/5) * (17/17) = (12 * 17) / (5 * 17) = 204/85 Both 204 and 85 are divisible by 17: 204/17 = 12 and 85/17 = 5 Therefore, the final simplified fraction is: ### Answer: 12/5
Expected answer: 12/5
Correct? Yes
Problem: After resolving the previous problem, let us consider a slightly different situation. Now, calculate the result of (10 / 25) * (20 / 4) instead of (12 / 25) * (20 / 4). What difference does this make to the result? Write your new answer as a simplified fraction.
Gemini-1.5 Flash:
Let's calculate (10/25) * (20/4): 1. **Simplify the fractions:** * 10/25 simplifies to 2/5. * 20/4 simplifies to 5/1. 2. **Multiply the simplified fractions:** * (2/5) * (5/1) = (2 * 5) / (5 * 1) = 10/5 3. **Simplify the resulting fraction:** * 10/5 simplifies to 2/1, which is simply 2. Comparing the results: * (12/25) * (20/4) = 12/5 * (10/25) * (20/4) = 2 The difference is that changing the numerator of the first fraction from 12 to 10 significantly impacts the final result. The initial problem yielded a fraction (12/5), while the modified problem resulted in a whole number (2). This difference is due to the change in the numerator affecting the simplification process and the final outcome. ### Answer: 2
Expected answer: 2
Correct? Yes
Problem: Calculate the following operation: multiply the fraction 14/10 by the fraction 30/5. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (14/10) * (30/5) = (14 * 30) / (10 * 5) Simplifying the multiplication: = 420 / 50 We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 10: = (420 / 10) / (50 / 10) = 42 / 5 ### Answer: 42/5
Expected answer: 42/5
Correct? Yes
Problem: After calculating the multiplication of 14/10 by 30/5, multiply that result by the fraction 13/15. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that (14/10) * (30/5) = 42/5. Now we need to multiply this result by 13/15: (42/5) * (13/15) = (42 * 13) / (5 * 15) Simplifying the multiplication: = 546 / 75 We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 3: = (546 / 3) / (75 / 3) = 182 / 25 ### Answer: 182/25
Expected answer: 182/25
Correct? Yes
Problem: In the previous problem, suppose that instead of 14/10 we had 30/10. Now, the problem becomes: calculate the multiplication of 30/10 by 30/5. What would be the simplified fraction as an answer?
Gemini-1.5 Flash:
Following the same steps as before: (30/10) * (30/5) = (30 * 30) / (10 * 5) Simplifying: = 900 / 50 Dividing numerator and denominator by their greatest common factor, 10: = (900 / 10) / (50 / 10) = 90 / 5 Again, we can simplify by dividing by 5: = (90 / 5) / (5 / 5) = 18 / 1 ### Answer: 18/1
Expected answer: 18
Correct? Yes
Problem: A baker is preparing a large batch of cookies that requires 26 cups of sugar per each full batch. If he only has enough sugar to make a fraction of the batch, represented by 29/14 of a full batch, how many batches of cookies can the baker make? Calculate this as ((26 / 1) / (29 / 14)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To divide fractions, we flip the second fraction and multiply. This means we have: (26 / 1) * (14 / 29) Now we multiply the numerators and the denominators: (26 * 14) / (1 * 29) Simplifying, we get: 364 / 29 This fraction cannot be simplified further. ### Answer: 364/29
Expected answer: 364/29
Correct? Yes
Problem: After completing the cookie orders for the event, the baker considers a change in his recipe that will impact how much sugar he uses. Now, instead of 26 cups of sugar per batch, he only plans to use 16 cups of sugar in the recipe. If he still only has enough sugar on hand for 29/14 of a full batch, how many batches can he now prepare with the amount of sugar he has on hand? Calculate this as (16 / (29 / 14)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To divide by a fraction, we flip the second fraction and multiply. This means we have: (16 / 1) * (14 / 29) Now we multiply the numerators and the denominators: (16 * 14) / (1 * 29) Simplifying, we get: 224 / 29 This fraction cannot be simplified further. ### Answer: 224/29
Expected answer: 224/29
Correct? Yes
Problem: Evaluate the following expression: (27 / 10) * (9 / 4). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We can simplify the expression by multiplying the numerators and the denominators: (27 / 10) * (9 / 4) = (27 * 9) / (10 * 4) This simplifies to: 243 / 40 ### Answer: 243/40
Expected answer: 243/40
Correct? Yes
Problem: After solving for s in the previous problem, now calculate a new value o, where o = (9 / 13) * s. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We know that s = 243/40. Let's substitute this value into the equation for o: o = (9/13) * (243/40) Now we can multiply the numerators and the denominators: o = (9 * 243) / (13 * 40) This simplifies to: o = 2187 / 520 ### Answer: 2187/520
Expected answer: 2187/520
Correct? Yes
Problem: After having calculated the previous problem where you multiplied (27 / 10) * (9 / 4), consider what would happen if instead of multiplying by (9 / 4), you multiplied by (9 / 11). Calculate the new value of s = ((27 / 10) * (9 / 11)) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We follow the same process as before, multiplying the numerators and denominators: (27 / 10) * (9 / 11) = (27 * 9) / (10 * 11) This simplifies to: 243 / 110 ### Answer: 243/110
Expected answer: 243/110
Correct? Yes
Problem: Evaluate the expression ((24 / 11) * (27 / 26)) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
First, we can simplify the multiplication of the fractions by multiplying the numerators and the denominators: (24/11) * (27/26) = (24 * 27) / (11 * 26) Now, we can calculate the products in the numerator and denominator: (24 * 27) / (11 * 26) = 648 / 286 Finally, we can simplify the fraction by finding the greatest common factor (GCD) of 648 and 286, which is 2: 648 / 286 = (2 * 324) / (2 * 143) = 324 / 143 ### Answer: 324/143
Expected answer: 324/143
Correct? Yes
Problem: You've just evaluated the expression ((24 / 11) * (27 / 26)) in the previous question. Now, go ahead and take the result from that previous operation and multiply it by (14 / 27). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We know from the previous calculation that ((24 / 11) * (27 / 26)) is equal to 324/143. Now, let's multiply this result by (14/27): (324/143) * (14/27) = (324 * 14) / (143 * 27) We can simplify this by canceling out common factors: (324 * 14) / (143 * 27) = (12 * 14) / (13 * 27) = 168 / 351 Finally, we can simplify this fraction further by finding the greatest common factor (GCD) of 168 and 351, which is 21: 168 / 351 = (21 * 8) / (21 * 17) = 8 / 17 ### Answer: 8/17
Expected answer: 168/143
Correct? No
Problem: Find the solution to the following multiplication problem: Multiply the fraction 26/9 by the fraction 17/13. Write your answer in simplest form.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (26/9) * (17/13) = (26 * 17) / (9 * 13) Now we simplify the result. We can simplify the fraction by dividing the numerator and denominator by their greatest common factor, which is 13: (26 * 17) / (9 * 13) = (2 * 17) / (9 * 1) = 34/9 ### Answer: 34/9
Expected answer: 34/9
Correct? Yes
Problem: Having solved the previous problem, now multiply your answer by the fraction 24/30. What is the result in simplest form?
Gemini-1.5 Flash:
We need to multiply the fraction 34/9 (the answer from the previous problem) by 24/30: (34/9) * (24/30) = (34 * 24) / (9 * 30) To simplify the multiplication, we can cancel out common factors in the numerator and denominator: * 34 and 30 share a common factor of 2 * 24 and 9 share a common factor of 3 This gives us: (17 * 8) / (3 * 5) = 136 / 15 ### Answer: 136/15
Expected answer: 136/45
Correct? No
Problem: If instead of multiplying the fraction 26/9 by the fraction 17/13, you multiplied 25/9 by 17/13, what would the result be in simplest form?
Gemini-1.5 Flash:
Following the same steps as before, we multiply the numerators and denominators: (25/9) * (17/13) = (25 * 17) / (9 * 13) We can't simplify this fraction further, as there's no common factor other than 1 for the numerator and denominator. Therefore, the simplified result is: (25 * 17) / (9 * 13) = 425/117 ### Answer: 425/117
Expected answer: 425/117
Correct? Yes
Problem: Solve the following problem: What is the result of the expression (28 / 16) / (27 / 24)? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We can solve this problem by simplifying each fraction first, and then dividing the results. * **Simplifying (28 / 16):** Both 28 and 16 are divisible by 4, so we get 7/4. * **Simplifying (27 / 24):** Both 27 and 24 are divisible by 3, so we get 9/8. Now we have the expression (7/4) / (9/8). Dividing by a fraction is the same as multiplying by the reciprocal of that fraction. Therefore, we can rewrite the expression as: (7/4) * (8/9) Now, we can multiply the numerators and the denominators: (7 * 8) / (4 * 9) = 56 / 36 Finally, we simplify the fraction by dividing both numerator and denominator by their greatest common factor, which is 4: 56 / 36 = 14 / 9 ### Answer: 14/9
Expected answer: 14/9
Correct? Yes
Problem: After solving for the result of the original expression (28 / 16) / (27 / 24), now multiply this result by itself. What is the outcome? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We know from the previous calculation that the result of (28 / 16) / (27 / 24) is 14/9. Now, we need to multiply this fraction by itself: (14/9) * (14/9) Multiplying fractions involves multiplying the numerators and the denominators: (14 * 14) / (9 * 9) = 196 / 81 The fraction 196/81 cannot be simplified further as they share no common factors other than 1. ### Answer: 196/81
Expected answer: 196/81
Correct? Yes
Problem: Calculate the expression ((15 / 3) * (19 / 26)) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the expression: 1. **Simplify the divisions:** * (15 / 3) = 5 * (19 / 26) remains as a fraction 2. **Multiply the results:** * 5 * (19/26) = 95/26 **Therefore, the simplified fraction is 95/26.** ### Answer: 95/26
Expected answer: 95/26
Correct? Yes
Problem: After you calculated ((15 / 3) * (19 / 26)), take that answer and multiply it by the fraction (14 / 24). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that ((15 / 3) * (19 / 26)) simplifies to 95/26. Now, let's multiply that by (14/24): (95/26) * (14/24) = (95 * 14) / (26 * 24) We can simplify this further by finding common factors: * 95 and 25 share a common factor of 5 * 14 and 24 share a common factor of 2 (95 * 14) / (26 * 24) = (19 * 7) / (13 * 12) Now, we can multiply the numerators and denominators: (19 * 7) / (13 * 12) = 133 / 156 Finally, we can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 13: 133 / 156 = (133/13) / (156/13) = 103/12 ### Answer: 103/12
Expected answer: 665/312
Correct? No
Problem: Let's consider a situation where instead of multiplying (15 / 3) by (19 / 26), you are now multiplying it by (27 / 26). What would be the result then? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's calculate the expression: 1. **Simplify the divisions:** * (15 / 3) = 5 * (27 / 26) remains as a fraction 2. **Multiply the results:** * 5 * (27/26) = 135/26 **Therefore, the simplified fraction is 135/26.** ### Answer: 135/26
Expected answer: 135/26
Correct? Yes
Problem: The local bakery was making a special order for a customer. The recipe they are using requires 19/28, and they want to make exactly 30/4 of this recipe. How much of the ingredient will they require?
Gemini-1.5 Flash:
Reasoning: To find out how much of the ingredient they will need, we need to multiply the amount required by the scaling factor. Scaling factor: 30/4 Amount of ingredient required: 19/28 Multiplying these two fractions: (19/28) * (30/4) = (19*30)/(28*4) = 570/112 Simplifying the fraction: 570/112 = 285/56 ### Answer: 285/56
Expected answer: 285/56
Correct? Yes
Problem: Continuing from the bakery scenario, suppose that the bakery has adjusted their special recipe, and instead of using 19/28, they now use 19/14 of the ingredient for a single cake. If a customer still wants to order 30/4 of this new recipe, how much of the ingredient will the bakery now require for this order?
Gemini-1.5 Flash:
Reasoning: We need to multiply the new amount of ingredient per cake (19/14) by the scaling factor (30/4) to find the total amount needed. (19/14) * (30/4) = (19*30)/(14*4) = 570/56 Simplifying the fraction: 570/56 = 285/28 ### Answer: 285/28
Expected answer: 285/28
Correct? Yes
Problem: Determine the result of ((5 / 2) / (26 / 15)). Write the final answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Dividing by a fraction is the same as multiplying by the reciprocal of that fraction. Therefore, we can rewrite the problem as follows: ((5/2) / (26/15)) = (5/2) * (15/26) Now we multiply the numerators and the denominators: (5/2) * (15/26) = (5*15) / (2*26) = 75/52 ### Answer: 75/52
Expected answer: 75/52
Correct? Yes
Problem: After determining the result of ((5 / 2) / (26 / 15)) in the previous problem, take that result and multiply it by itself. What simplified fraction do you get?
Gemini-1.5 Flash:
In the previous problem, we determined that ((5/2) / (26/15)) = 75/52. Now, we need to multiply this fraction by itself: (75/52) * (75/52) = (75 * 75) / (52 * 52) = 5625 / 2704 This fraction cannot be simplified further. ### Answer: 5625/2704
Expected answer: 5625/2704
Correct? Yes
Problem: After determining the result of ((5 / 2) / (26 / 15)) in the previous problem, consider a situation where there were initially 14 units instead of 5. What is the result when you divide 14 by (26 / 15)? Write the final answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We use the same principle of multiplying by the reciprocal: 14 / (26/15) = 14 * (15/26) = (14 * 15) / 26 = 210 / 26 We can simplify this fraction by dividing both the numerator and denominator by their greatest common factor, which is 2: (210 / 2) / (26 / 2) = 105 / 13 ### Answer: 105/13
Expected answer: 105/13
Correct? Yes
Problem: Calculate the result of the expression (9/3) * (27/28) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
First, we simplify the fraction (9/3) to 3. Then we multiply 3 by (27/28): 3 * (27/28) = (3 * 27) / 28 = 81 / 28 The fraction 81/28 is already in its simplest form since 81 and 28 have no common divisors other than 1. ### Answer: 81/28
Expected answer: 81/28
Correct? Yes
Problem: After you have calculated the result of the expression (9/3) * (27/28) from the previous problem, calculate the square of your answer. Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We previously determined that (9/3) * (27/28) = 81/28. The square of 81/28 is (81/28) * (81/28). Multiplying the numerators and denominators, we get: (81 * 81) / (28 * 28) = 6561 / 784. This fraction cannot be simplified further as 6561 and 784 share no common divisors other than 1. ### Answer: 6561/784
Expected answer: 6561/784
Correct? Yes
Problem: In the previous problem, you multiplied the fractions (9/3) * (27/28). Now consider the case where the second fraction has changed from (27/28) to (23/28). How does this change your answer? Recalculate using (9/3) * (23/28) and write your new answer as a simplified fraction.
Gemini-1.5 Flash:
We still start by simplifying the fraction (9/3) to 3. Now we multiply 3 by (23/28): 3 * (23/28) = (3 * 23) / 28 = 69/28 The fraction 69/28 is already in its simplest form since 69 and 28 have no common divisors other than 1. ### Answer: 69/28
Expected answer: 69/28
Correct? Yes
Problem: Calculate the solution to the following equation and write your answer as a simplified fraction: ((15 / 13) * (24 / 24))
Gemini-1.5 Flash:
Reasoning: * We can simplify (24/24) to 1. * So the equation becomes (15/13) * 1. * Multiplying any number by 1 gives us the original number. Therefore, ((15 / 13) * (24 / 24)) = 15/13. ### Answer: 15/13
Expected answer: 15/13
Correct? Yes
Problem: After calculating the solution to ((15 / 13) * (24 / 24)), multiply your answer with (22 / 7) and write that answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We already know that ((15 / 13) * (24 / 24)) = 15/13. Now we need to multiply (15/13) by (22/7). (15/13) * (22/7) = (15 * 22) / (13 * 7) = 330/91 This fraction cannot be simplified further. ### Answer: 330/91
Expected answer: 330/91
Correct? Yes
Problem: After calculating the solution to ((15 / 2) * (24 / 24)), consider what would happen if you originally had 15 halves instead of 15 thirteenths. Multiply this new fraction with 1 (represented by (24 / 24)) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: * We start with 15 halves, which can be represented as the fraction 15/2. * We are multiplying this by 1, represented by (24/24). * Multiplying any number by 1 results in the original number. Therefore, (15/2) * (24/24) = 15/2. ### Answer: 15/2
Expected answer: 15/2
Correct? Yes
Problem: Calculate the result of the following multiplication of fractions operation: (9 / 7) * (25 / 30). Express your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how we can solve this problem: 1. **Multiply the numerators:** 9 * 25 = 225 2. **Multiply the denominators:** 7 * 30 = 210 3. **Simplify the resulting fraction:** 225/210 can be simplified by dividing both numerator and denominator by their greatest common factor, 15. This gives us the simplified fraction: **15/14** ### Answer: 15/14
Expected answer: 15/14
Correct? Yes
Problem: Using the answer you obtained from the previous problem, multiply it by 15/15. What simplified fraction do you get?
Gemini-1.5 Flash:
From the previous problem, we know the fraction is 15/14. Multiplying this by 15/15, we get: (15/14) * (15/15) = (15 * 15) / (14 * 15) Simplifying by canceling out the 15 in the numerator and denominator, we get: (15 * 15) / (14 * 15) = 15/14 ### Answer: 15/14
Expected answer: 15/14
Correct? Yes
Problem: The previous problem involved calculating (9 / 7) * (25 / 30). Now calculate (9 / 7) * (25 / 21) which is similar but with a slight change in the second fraction. What simplified fraction do you get in this scenario?
Gemini-1.5 Flash:
Let's calculate the result: 1. **Multiply the numerators:** 9 * 25 = 225 2. **Multiply the denominators:** 7 * 21 = 147 3. **Simplify the resulting fraction:** 225/147 can be simplified by dividing both numerator and denominator by their greatest common factor, 9. This gives us the simplified fraction: **25/16** ### Answer: 25/16
Expected answer: 75/49
Correct? No
Problem: Calculate the result of the problem ((9 / 8) / (20 / 18)). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Dividing by a fraction is the same as multiplying by its reciprocal. The reciprocal of 20/18 is 18/20. Therefore, ((9 / 8) / (20 / 18)) is equivalent to (9/8) * (18/20). Simplifying this multiplication: (9/8) * (18/20) = (9 * 18) / (8 * 20) = 162 / 160. We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 2: 162 / 160 = (162/2) / (160/2) = 81/80. ### Answer: 81/80
Expected answer: 81/80
Correct? Yes
Problem: Following the previous question, now calculate the result of multiplying your answer by the fraction (29 / 21). Write your final answer as a simplified fraction. In other words, calculate ((29 / 21) * ((9 / 8) / (20 / 18))).
Gemini-1.5 Flash:
Reasoning: We already calculated ((9 / 8) / (20 / 18)) to be 81/80. Now we need to multiply that by 29/21. (29 / 21) * (81 / 80) = (29 * 81) / (21 * 80) = 2349 / 1680 This fraction cannot be simplified further as there are no common factors between 2349 and 1680. ### Answer: 2349/1680
Expected answer: 783/560
Correct? Yes
Problem: In the previous scenario, instead of starting with a fraction of 9/8, let's say we started with a simpler fraction of 9 and divide it by the complex fraction 20/18. What would be the result? In other words, calculate (9 / (20 / 18)). Express your final answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Similar to the previous problem, dividing by a fraction is the same as multiplying by its reciprocal. The reciprocal of 20/18 is 18/20. Therefore, 9 / (20/18) is equivalent to 9 * (18/20). Simplifying this multiplication: 9 * (18/20) = (9 * 18) / 20 = 162 / 20. We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 2: 162 / 20 = (162/2) / (20/2) = 81/10. ### Answer: 81/10
Expected answer: 81/10
Correct? Yes
Problem: What is the result of performing the operation (30 / 6) / (13 / 9)? Write your answer as a simplified number or fraction.
Gemini-1.5 Flash:
Reasoning: We can simplify this by performing the divisions in the parentheses first: * 30 / 6 = 5 * 13 / 9 = 13/9 (we leave this as a fraction since it's not a whole number) Now we have 5 / (13/9). Dividing by a fraction is the same as multiplying by its reciprocal. The reciprocal of 13/9 is 9/13. So, we have: 5 * (9/13) = 45/13 ### Answer: 45/13
Expected answer: 45/13
Correct? Yes
Problem: Following the result of the previous question, calculate the new result if you multiply the answer you got by (14 / 4). What is your answer now?
Gemini-1.5 Flash:
Reasoning: We previously found that (30 / 6) / (13 / 9) = 45/13. Now we need to multiply this by (14/4): (45/13) * (14/4) = (45 * 14) / (13 * 4) Simplifying the multiplication: = 630 / 52 We can simplify this fraction further by dividing both numerator and denominator by their greatest common factor, which is 2: = 315 / 26 ### Answer: 315/26
Expected answer: 315/26
Correct? Yes
Problem: If you divide 30 by 18 and then multiply the result by the fraction 18/6, what is the result?
Gemini-1.5 Flash:
Here's how to solve this problem step-by-step: 1. **Divide 30 by 18:** 30 / 18 = 5/3 2. **Multiply the result by the fraction 18/6:** (5/3) * (18/6) = (5 * 18) / (3 * 6) = 90 / 18 3. **Simplify the fraction:** 90 / 18 = 5 ### Answer: 5
Expected answer: 5
Correct? Yes
Problem: If you take the result from the previous problem (30 divided by 18, multiplied by 18/6) and multiply this by 8/20, what is the resulting value?
Gemini-1.5 Flash:
We already know the result of the previous problem is 5. 1. **Multiply 5 by 8/20:** 5 * (8/20) = (5 * 8) / 20 = 40/20 2. **Simplify the fraction:** 40/20 = 2 ### Answer: 2
Expected answer: 2
Correct? Yes
Problem: If we adjust the original problem and now divide 30 by 4 and then multiply by the fraction 18/6, how does the result compares to our original calculation? What is the new value?
Gemini-1.5 Flash:
Let's follow the steps: 1. **Divide 30 by 4:** 30 / 4 = 7.5 2. **Multiply the result by the fraction 18/6:** 7.5 * (18/6) = 7.5 * 3 = 22.5 **Comparing to the original calculation:** The original calculation resulted in 5. This new calculation gives us 22.5. Therefore, the new value is **significantly larger** than the original value. ### Answer: The new value is 22.5, which is significantly larger than the original value of 5.
Expected answer: 45/2
Correct? Yes
Problem: Calculate the result of the following problem: ((20 / 2) * (2 / 18)) and write the answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the problem: 1. **Solve the division inside the first parentheses:** 20 / 2 = 10 2. **Solve the division inside the second parentheses:** 2 / 18 = 1/9 3. **Multiply the results from steps 1 and 2:** 10 * (1/9) = 10/9 ### Answer: 10/9
Expected answer: 10/9
Correct? Yes
Problem: After calculating the result of ((20 / 2) * (2 / 18)), now find the answer for ((27 / 4) * that result). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We know that ((20 / 2) * (2 / 18)) = 10/9. Now we need to calculate: ((27 / 4) * (10 / 9)) 1. **Multiply the numerators:** 27 * 10 = 270 2. **Multiply the denominators:** 4 * 9 = 36 3. **Simplify the resulting fraction:** 270/36 = 15/2 ### Answer: 15/2
Expected answer: 15/2
Correct? Yes
Problem: After calculating the result of ((20 / 2) * (2 / 18)), reconsider your calculation, but this time using (15 / 18) instead of (2 / 18). Thus, find the answer for ((20 / 2) * (15 / 18)). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the problem: 1. **Solve the division inside the first parentheses:** 20 / 2 = 10 2. **Simplify the fraction inside the second parentheses:** 15 / 18 = 5/6 (both numerator and denominator are divisible by 3) 3. **Multiply the results from steps 1 and 2:** 10 * (5/6) = 50/6 4. **Simplify the resulting fraction:** 50/6 = 25/3 (both numerator and denominator are divisible by 2) ### Answer: 25/3
Expected answer: 25/3
Correct? Yes
Problem: Solve the following problem and write your answer as a simplified fraction: ((11 / 9) * (29 / 6))
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators. (11/9) * (29/6) = (11 * 29) / (9 * 6) = 319 / 54 This fraction cannot be simplified further. ### Answer: 319/54
Expected answer: 319/54
Correct? Yes
Problem: After finding the result of ((11 / 9) * (29 / 6)), multiply your answer by the fraction (11 / 5). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that (11/9) * (29/6) = 319/54. Now we need to multiply this result by (11/5): (319/54) * (11/5) = (319 * 11) / (54 * 5) = 3509 / 270 This fraction can be simplified by dividing both the numerator and denominator by their greatest common factor, which is 3. (3509 / 3) / (270 / 3) = 1169 / 90 ### Answer: 1169/90
Expected answer: 3509/270
Correct? No
Problem: After finding the result of ((21 / 9) * (29 / 6)), consider what would have happened if the initial calculation involved (21 / 9) instead of (11 / 9). Calculate the new result and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's first calculate the new result: (21/9) * (29/6) = (21 * 29) / (9 * 6) = 609 / 54 Now, we can simplify this fraction by finding the greatest common factor of 609 and 54. The greatest common factor is 27. 609 / 27 = 22.5 54 / 27 = 2 Therefore, the simplified fraction is 22.5 / 2, which can be further simplified to 45/4. ### Answer: 45/4
Expected answer: 203/18
Correct? No
Problem: Calculate the result for the following mathematical operation: (30 / 7) * (16 / 19). Express your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to calculate the result: * **Simplify the fractions:** (30/7) and (16/19) are already in simplest form. * **Multiply the numerators and the denominators:** (30 * 16) / (7 * 19) = 480 / 133 **Therefore, the simplified fraction is 480/133.** ### Answer: 480/133
Expected answer: 480/133
Correct? Yes
Problem: Let's proceed with the result found in the previous fraction multiplication task. Now, take that result and multiply it by 22/7. What is the new result? Express your answer as a simplified fraction.
Gemini-1.5 Flash:
We previously found that (30/7) * (16/19) = 480/133. Now, let's multiply this result by 22/7: (480/133) * (22/7) = (480 * 22) / (133 * 7) = 10560 / 931 **Therefore, the new result, expressed as a simplified fraction, is 10560/931.** ### Answer: 10560/931
Expected answer: 10560/931
Correct? Yes
Problem: Recall the earlier problem where we performed a fraction multiplication. If we consider a slight change and now multiply 21/7 (instead of 30/7) with 16/19, what would be the result? Remember to express your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's calculate the result of (21/7) * (16/19): * **Simplify the fraction (21/7):** 21/7 simplifies to 3/1. * **Multiply the numerators and the denominators:** (3 * 16) / (1 * 19) = 48 / 19 **Therefore, the simplified fraction is 48/19.** ### Answer: 48/19
Expected answer: 48/19
Correct? Yes
Problem: Calculate the product of 25/22 and 20/3 and write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (25/22) * (20/3) = (25 * 20) / (22 * 3) Simplifying the multiplication: = 500 / 66 We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 2: = (500 / 2) / (66 / 2) = 250 / 33 ### Answer: 250/33
Expected answer: 250/33
Correct? Yes
Problem: Following the previous calculation, take the product result of 25/22 and 20/3. Now multiply that result with 28/29 and write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We know from the previous calculation that the product of 25/22 and 20/3 is 250/33. Now we need to multiply this by 28/29: (250/33) * (28/29) = (250 * 28) / (33 * 29) Simplifying the multiplication: = 7000 / 957 We can't simplify this fraction further since 7000 and 957 share no common factors other than 1. ### Answer: 7000/957
Expected answer: 7000/957
Correct? Yes
Problem: After reconsidering the calculation from the previous step, if we actually had 25/15 instead of 25/22. Recalculate the product with these new quantities. What is the product of 25/15 and 20/3? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (25/15) * (20/3) = (25 * 20) / (15 * 3) Simplifying the multiplication: = 500 / 45 We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 5: = (500 / 5) / (45 / 5) = 100 / 9 ### Answer: 100/9
Expected answer: 100/9
Correct? Yes
Problem: Calculate the result of the following problem and write your answer as a simplified fraction: ((29 / 2) / (23 / 19))
Gemini-1.5 Flash:
Here's how to solve the problem: **Understanding Division of Fractions** Dividing by a fraction is the same as multiplying by the reciprocal of that fraction. The reciprocal of a fraction is found by flipping the numerator and denominator. **Applying the Rule** 1. **Find the reciprocal of (23/19):** The reciprocal is (19/23). 2. **Rewrite the problem as multiplication:** (29/2) * (19/23) 3. **Multiply the numerators and the denominators:** (29 * 19) / (2 * 23) 4. **Simplify (if possible):** This fraction cannot be simplified further. **Final Answer** ### Answer: 551/46
Expected answer: 551/46
Correct? Yes
Problem: After calculating the result of ((29 / 2) / (23 / 19)), multiply your answer by (29 / 18). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that ((29 / 2) / (23 / 19)) = 551/46. Now, let's multiply that by (29/18): (551/46) * (29/18) = (551 * 29) / (46 * 18) Simplify the multiplication: = 15979 / 828 This fraction can be simplified by dividing both numerator and denominator by their greatest common factor, which is 3: = (15979 / 3) / (828 / 3) = 5326.333 / 276 Since this is not a whole number, we need to convert it back to a fraction: = **5326333 / 276000** ### Answer: 5326333 / 276000
Expected answer: 15979/828
Correct? No
Problem: Calculate the solution for the following expression: (5 / 3) * (27 / 13) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to calculate the solution: 1. **Simplify the fractions:** * 5/3 is already in its simplest form. * 27/13 is also already in its simplest form. 2. **Multiply the numerators and the denominators:** * (5 * 27) / (3 * 13) = 135 / 39 3. **Simplify the resulting fraction:** * Both 135 and 39 are divisible by 3. * (135 / 3) / (39 / 3) = 45 / 13 ### Answer: 45/13
Expected answer: 45/13
Correct? Yes
Problem: After calculating the solution for the previous question ((5 / 3) * (27 / 13)), multiply the result you obtained by (8 / 14) and simplify the fraction that you get. What is your answer?
Gemini-1.5 Flash:
We already know that (5/3) * (27/13) = 45/13. Now, let's multiply this result by (8/14): (45/13) * (8/14) = (45 * 8) / (13 * 14) = 360 / 182 Finally, let's simplify this fraction. Both 360 and 182 are divisible by 2: (360 / 2) / (182 / 2) = 180 / 91 ### Answer: 180/91
Expected answer: 180/91
Correct? Yes
Problem: After considering the previous problem, there is a slight change. Instead of multiplying (5/3) by (27/13), let's make it a little easy and multiply (5/3) by (27/9). Calculate the new solution and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve this: 1. **Simplify the fractions:** * 5/3 is already in its simplest form. * 27/9 can be simplified by dividing both numerator and denominator by 9, resulting in 3/1. 2. **Multiply the numerators and the denominators:** * (5 * 3) / (3 * 1) = 15 / 3 3. **Simplify the resulting fraction:** * 15/3 can be simplified by dividing both numerator and denominator by 3, resulting in 5/1. 4. **Express the answer as a simplified fraction:** * 5/1 is equivalent to 5. ### Answer: 5
Expected answer: 5
Correct? Yes
Problem: Calculate the answer to the following problem: (29 / 29) * (1 / 1) and write your answer.
Gemini-1.5 Flash:
Reasoning: * Any number divided by itself equals 1, so 29/29 = 1. * Any number divided by 1 equals itself, so 1/1 = 1. * Therefore, (29/29) * (1/1) = 1 * 1 = 1. ### Answer: 1
Expected answer: 1
Correct? Yes
Problem: Now, use your answer from the last problem and multiply it by (27 / 27) to solve this follow-up problem. What is the result?
Gemini-1.5 Flash:
Reasoning: We already know that (29/29) * (1/1) = 1. * Any number divided by itself equals 1, so 27/27 = 1. * Therefore, 1 * (27/27) = 1 * 1 = 1. ### Answer: 1
Expected answer: 1
Correct? Yes
Problem: Now, let's change the problem a little bit. Instead of (29 / 29) * (1 / 1), let's use (29 / 6) * (1 / 1). What will the result be?
Gemini-1.5 Flash:
Reasoning: * 29/6 cannot be simplified further, so it remains 29/6. * Any number divided by 1 equals itself, so 1/1 = 1. * Therefore, (29/6) * (1/1) = (29/6) * 1 = 29/6. ### Answer: 29/6
Expected answer: 29/6
Correct? Yes
Problem: Calculate the product of the fractions 11/19 and 22/7. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (11/19) * (22/7) = (11 * 22) / (19 * 7) = 242 / 133 We can simplify this fraction by finding the greatest common factor (GCD) of 242 and 133. The GCD is 11. Dividing both numerator and denominator by 11, we get: 242 / 133 = (242 / 11) / (133 / 11) = 22/13 ### Answer: 22/13
Expected answer: 242/133
Correct? No
Problem: What is the result of multiplying 21/30 by 19/5? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: To multiply fractions, we multiply the numerators and the denominators: (21/30) * (19/5) = (21 * 19) / (30 * 5) Simplifying the multiplication: = 399 / 150 Now, we can simplify this fraction by finding the greatest common factor (GCD) of 399 and 150. The GCD is 3. Dividing both numerator and denominator by 3: = (399 / 3) / (150 / 3) = 133/50 ### Answer: 133/50
Expected answer: 133/50
Correct? Yes
Problem: If you further multiply the result you got from the last problem ((21/30) * (19/5)) by 16/12, what would be the final result? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We already know (21/30) * (19/5) = 133/50. Now, we need to multiply this by 16/12: (133/50) * (16/12) = (133 * 16) / (50 * 12) Simplifying the multiplication: = 2128 / 600 Now, we need to simplify this fraction. The GCD of 2128 and 600 is 8. Dividing both numerator and denominator by 8: = (2128 / 8) / (600 / 8) = 266/75 ### Answer: 266/75
Expected answer: 266/75
Correct? Yes
Problem: If in the previous problem, instead of multiplying 21/30 by 19/5, you had to multiply 9/30 by 19/5, what would be the new result? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Following the same process as before, we multiply the numerators and denominators: (9/30) * (19/5) = (9 * 19) / (30 * 5) Simplifying the multiplication: = 171 / 150 Now, we can simplify this fraction by finding the greatest common factor (GCD) of 171 and 150. The GCD is 3. Dividing both numerator and denominator by 3: = (171 / 3) / (150 / 3) = 57/50 ### Answer: 57/50
Expected answer: 57/50
Correct? Yes
Problem: What is the result when you multiply the fraction 11/15 by the fraction 23/8? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: To multiply fractions, we multiply the numerators and the denominators. (11/15) * (23/8) = (11 * 23) / (15 * 8) = 253/120 Since 253 and 120 share a common factor of 1, we simplify the fraction by dividing both numerator and denominator by 1. 253/120 = (253/1) / (120/1) = 253/120 ### Answer: 253/120
Expected answer: 253/120
Correct? Yes
Problem: Based on your previous calculation, what is the result when you multiply the answer you found for 11/15 * 23/8 by itself? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We previously found that (11/15) * (23/8) = 253/120. To multiply this fraction by itself, we square it: (253/120) * (253/120) = (253 * 253) / (120 * 120) = 64009 / 14400 Since 64009 and 14400 share no common factors other than 1, this fraction is already simplified. ### Answer: 64009/14400
Expected answer: 64009/14400
Correct? Yes
Problem: In the previous problem, you multiplied the fractions 11/15 and 23/8. But what if instead, you multiply the fractions 11/15 and 26/8? What would be the result of this change? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Following the same multiplication process, we get: (11/15) * (26/8) = (11 * 26) / (15 * 8) = 286/120 Both 286 and 120 share a common factor of 2. Simplifying, we get: 286/120 = (286/2) / (120/2) = 143/60 ### Answer: 143/60
Expected answer: 143/60
Correct? Yes
Problem: What is the result of (29 / 16) * (21 / 27)? Present your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to simplify the expression: 1. **Simplify the fractions:** * 29/16 is already in its simplest form. * 21/27 can be simplified by dividing both numerator and denominator by 3, resulting in 7/9. 2. **Multiply the simplified fractions:** * (29/16) * (7/9) = (29 * 7) / (16 * 9) 3. **Calculate the product:** * (29 * 7) / (16 * 9) = 203 / 144 ### Answer: 203/144
Expected answer: 203/144
Correct? Yes
Problem: What is the result when the value from the previous problem ((29 / 16) * (21 / 27)) is multiplied by itself? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We know from the previous problem that (29/16) * (21/27) simplifies to 203/144. To multiply this by itself, we do: (203/144) * (203/144) = (203 * 203) / (144 * 144) Calculating the product: (203 * 203) / (144 * 144) = 41209 / 20736 ### Answer: 41209/20736
Expected answer: 41209/20736
Correct? Yes
Problem: In the question before, we considered the multiplication of fractions (29 / 16) and (21 / 27). Now replace the fraction 16 in the denominator with 5. What is the result of this new operation? Present your answer as a simplified fraction. In other words, what is the output of ((29 / 5) * (21 / 27))?
Gemini-1.5 Flash:
Here's how to solve the problem: 1. **Simplify the fractions:** * 29/5 is already in its simplest form. * 21/27 can be simplified by dividing both numerator and denominator by 3, resulting in 7/9. 2. **Multiply the simplified fractions:** * (29/5) * (7/9) = (29 * 7) / (5 * 9) 3. **Calculate the product:** * (29 * 7) / (5 * 9) = 203 / 45 ### Answer: 203/45
Expected answer: 203/45
Correct? Yes
Problem: What is the result when (28 / 1) is divided by (30 / 27)? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: (28 / 1) / (30 / 27) = (28/1) * (27/30) We can simplify this by canceling out common factors: (28/1) * (27/30) = (14/1) * (9/10) Now multiply the numerators and the denominators: (14/1) * (9/10) = (14*9)/(1*10) = 126/10 Simplify the fraction by dividing both numerator and denominator by 2: 126/10 = 63/5 ### Answer: 63/5
Expected answer: 126/5
Correct? No
Problem: What is the result when you multiply ((25 / 25) * (20 / 7))? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: * First, simplify (25 / 25) which equals 1. * Then, multiply 1 by (20 / 7). * Since anything multiplied by 1 is itself, the result is simply 20/7. ### Answer: 20/7
Expected answer: 20/7
Correct? Yes
Problem: After finding the result of ((25 / 25) * (20 / 7)), what is the result when you multiply this product by itself? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: * We know from the previous calculation that ((25 / 25) * (20 / 7)) = 20/7. * Multiplying this by itself means we need to calculate (20/7) * (20/7). * When multiplying fractions, we multiply the numerators and the denominators: (20 * 20) / (7 * 7) = 400/49. ### Answer: 400/49
Expected answer: 400/49
Correct? Yes
Problem: After reevaluating the previous problem, if you found the result of ((25 / 25) * (11 / 7)) instead of ((25 / 25) * (20 / 7)), what would be the new result? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: * First, simplify (25 / 25) which equals 1. * Then, multiply 1 by (11 / 7). * Since anything multiplied by 1 is itself, the result is simply 11/7. ### Answer: 11/7
Expected answer: 11/7
Correct? Yes
Problem: Calculate the following: multiply 5 (which is equivalent to the fraction 5/1) with the fraction 16/27. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Multiplying fractions involves multiplying the numerators and the denominators: (5/1) * (16/27) = (5 * 16) / (1 * 27) = 80/27 The fraction 80/27 is already in its simplest form. ### Answer: 80/27
Expected answer: 80/27
Correct? Yes
Problem: Suppose you initially started with 30 (instead of 5), which is equivalent to the fraction 30/1. You are then required to multiply this with the fraction 16/27. How does this change the result from the previous problem? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Following the same process as before: (30/1) * (16/27) = (30 * 16) / (1 * 27) = 480/27 Now, we need to simplify this fraction. Both 480 and 27 are divisible by 9: 480/27 = (480/9) / (27/9) = 53 1/3 / 3 = 17 2/3 / 1 = 17 2/3 ### Answer: 17 2/3
Expected answer: 160/9
Correct? No
Problem: Calculate the result of the expression ((27 / 3) / (12 / 12)) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's break down the expression step-by-step: 1. **Inside the parentheses:** - (27 / 3) = 9 - (12 / 12) = 1 2. **Divide the results:** - 9 / 1 = 9 Therefore, the simplified fraction representing the result of the expression is 9/1, which is equivalent to 9. ### Answer: 9/1
Expected answer: 9
Correct? Yes
Problem: Calculate the result of the following operation: (15 / 16) * (29 / 2). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators. (15/16) * (29/2) = (15 * 29) / (16 * 2) = 435 / 32 This fraction cannot be simplified further. ### Answer: 435/32
Expected answer: 435/32
Correct? Yes
Problem: If the result from the previous problem is multiplied by (18/18), what is the new result? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We know from the previous problem that (15/16) * (29/2) = 435/32. Multiplying by (18/18) is the same as multiplying by 1, so it won't change the value of the fraction. Therefore: (435/32) * (18/18) = 435/32 ### Answer: 435/32
Expected answer: 435/32
Correct? Yes
Problem: In the previous problem, instead of multiplying (15/16) by (29/2), what would be the result if we multiply it by (13/2) instead? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's multiply (15/16) by (13/2): (15/16) * (13/2) = (15 * 13) / (16 * 2) = 195/32 This fraction cannot be simplified further. ### Answer: 195/32
Expected answer: 195/32
Correct? Yes
Problem: Calculate the solution to this mathematical equation: ((6 / 2) / (13 / 9)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the equation: 1. **Simplify the inner divisions:** * (6 / 2) = 3 * (13 / 9) = 13/9 2. **Divide the simplified results:** * 3 / (13/9) = 3 * (9/13) = 27/13 ### Answer: 27/13
Expected answer: 27/13
Correct? Yes
Problem: Following your previous calculation, how would the result change if the first fraction was actually ((6 / 2) / 3) instead of ((6 / 2) / (13 / 9))? Calculate and write your answer as a simplfied fraction.
Gemini-1.5 Flash:
Let's break down the calculation: 1. **Simplify the inner division:** * (6 / 2) = 3 2. **Divide the simplified results:** * 3 / 3 = 1 ### Answer: 1
Expected answer: 1
Correct? Yes
Problem: Calculate the answer to the following problem: divide seven wholes, which is the same as 7/1, by 15/9. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Dividing by a fraction is the same as multiplying by the reciprocal of that fraction. The reciprocal of 15/9 is 9/15. Therefore, 7/1 divided by 15/9 is the same as 7/1 multiplied by 9/15. (7/1) * (9/15) = (7*9)/(1*15) = 63/15. To simplify this fraction, find the greatest common factor of 63 and 15, which is 3. Divide both the numerator and denominator by 3: 63/3 = 21 and 15/3 = 5 ### Answer: 21/5
Expected answer: 21/5
Correct? Yes
Problem: Following up on the last question, once you have found the result of dividing seven wholes by 15/9, multiply your answer by the fraction 10/5. What do you get as a simplified fraction?
Gemini-1.5 Flash:
We found that 7/1 divided by 15/9 simplifies to 21/5. Now, we need to multiply 21/5 by 10/5: (21/5) * (10/5) = (21*10) / (5*5) = 210/25 To simplify this fraction, find the greatest common factor of 210 and 25, which is 5. Divide both the numerator and denominator by 5: 210/5 = 42 and 25/5 = 5 ### Answer: 42/5
Expected answer: 42/5
Correct? Yes
Problem: Previously, you evaluated the result of dividing seven wholes, or 7/1, by 15/9. Now, consider what would happen if instead of seven whole, there were twenty wholes, or 20/1. What would be the result if you divide twenty wholes by 15/9? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Following the same logic as before, we'll multiply 20/1 by the reciprocal of 15/9, which is 9/15. (20/1) * (9/15) = (20*9)/(1*15) = 180/15 To simplify, we'll find the greatest common factor of 180 and 15, which is 15. Dividing both numerator and denominator by 15: 180/15 = 12 and 15/15 = 1. ### Answer: 12/1
Expected answer: 12
Correct? Yes
Problem: What is the result when you multiply (23/10) by (9/1)?
Gemini-1.5 Flash:
When multiplying fractions, we multiply the numerators and the denominators. (23/10) * (9/1) = (23 * 9) / (10 * 1) = 207/10 ### Answer: 207/10
Expected answer: 207/10
Correct? Yes
Problem: You have already calculated the result of (23/10) multiplied by (9/1). Now, multiply this result by (1/16). What is your answer?
Gemini-1.5 Flash:
We already know that (23/10) * (9/1) = 207/10. Now, we multiply this result by (1/16): (207/10) * (1/16) = (207 * 1) / (10 * 16) = 207/160 ### Answer: 207/160
Expected answer: 207/160
Correct? Yes
Problem: Previously, you computed the result of (23/10) multiplied by (9/1). Now, consider what would have happened if instead of (9/1), you had (9/6). Multiply (23/10) by this new fraction. What is your answer?
Gemini-1.5 Flash:
We're multiplying (23/10) by (9/6). As before, we multiply the numerators and the denominators: (23/10) * (9/6) = (23 * 9) / (10 * 6) = 207/60 We can simplify this fraction by dividing both the numerator and denominator by their greatest common factor, which is 3: 207/60 = (207/3) / (60/3) = 69/20 ### Answer: 69/20
Expected answer: 69/20
Correct? Yes
Problem: What is ((18 / 4) * (10 / 11))? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve this: 1. **Simplify the fractions inside the parentheses:** - (18/4) simplifies to 9/2 - (10/11) remains as is. 2. **Multiply the simplified fractions:** - (9/2) * (10/11) = (9 * 10) / (2 * 11) 3. **Simplify the result:** - (9 * 10) / (2 * 11) = 90/22 4. **Reduce the fraction to its simplest form:** - Both 90 and 22 are divisible by 2, so we get 45/11. ### Answer: 45/11
Expected answer: 45/11
Correct? Yes
Problem: After calculating the value of ((18 / 4) * (10 / 11)), now multiply this result by the fraction (6 / 4). What is the final value? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that ((18 / 4) * (10 / 11)) simplifies to 45/11. Now, let's multiply this by (6/4): (45/11) * (6/4) = (45 * 6) / (11 * 4) Simplify: 270/44 Both 270 and 44 are divisible by 2, so we get 135/22. ### Answer: 135/22
Expected answer: 135/22
Correct? Yes
Problem: After calculating the value of ((18 / 1) * (10 / 11)), consider what would happen if instead of dividing 18 by 4 in the initial step, you were to divide it by 1. Calculate the new result. What is the final answer? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's calculate the new result: 1. **Replace (18/4) with (18/1):** The expression becomes ((18/1) * (10/11)) 2. **Simplify:** - (18/1) simplifies to 18 - (10/11) remains as is. 3. **Multiply:** - 18 * (10/11) = (18 * 10) / 11 4. **Simplify:** - (18 * 10) / 11 = 180/11 ### Answer: 180/11
Expected answer: 180/11
Correct? Yes
Problem: What is the numerical result when the fraction 24/23 is multiplied by the fraction 23/3?
Gemini-1.5 Flash:
Reasoning: When multiplying fractions, we multiply the numerators and the denominators. (24/23) * (23/3) = (24 * 23) / (23 * 3) Notice that 23 appears in both the numerator and denominator, and we can cancel them out. This leaves us with: (24 * 23) / (23 * 3) = 24/3 Now we can simplify this fraction: 24/3 = 8 ### Answer: 8
Expected answer: 8
Correct? Yes
Problem: Continuing from the previous problem, if the result is then multiplied by the fraction 30/21, what is the final numerical outcome?
Gemini-1.5 Flash:
Reasoning: We already know the result of the first multiplication is 8. Now we need to multiply that by 30/21. 8 * (30/21) = (8 * 30) / 21 We can simplify this by dividing both the numerator and denominator by their greatest common factor, which is 3: (8 * 30) / 21 = (8 * 10) / 7 Now, we can multiply the numerator: (8 * 10) / 7 = 80 / 7 ### Answer: 80/7
Expected answer: 80/7
Correct? Yes
Problem: Continuing from the previous problem, if we replace the original fraction of 23/3 with 18/3 and keep the 24/23 fraction the same, what now happens to the numerical result when we perform the multiplication?
Gemini-1.5 Flash:
Reasoning: Let's compare the two scenarios: * **Scenario 1:** (24/23) * (23/3) = 8 * **Scenario 2:** (24/23) * (18/3) = ? Notice that the only difference is the denominator of the second fraction. In Scenario 1, the denominator is 3. In Scenario 2, the denominator is now 3. Since we are multiplying the fractions, changing the denominator of the second fraction will directly affect the result of the multiplication. Because the denominator in Scenario 2 is smaller than the denominator in Scenario 1, the resulting fraction will be larger. To calculate the exact result: (24/23) * (18/3) = (24 * 18) / (23 * 3) = 432/69 This fraction can be simplified, but we can already see that it will be greater than 8, the result from Scenario 1. ### Answer: The numerical result will increase.
Expected answer: 144/23
Correct? No
Problem: Determine the solution for the following division of fractions: (20 / 13) / (17 / 16) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
When dividing fractions, we multiply by the reciprocal of the second fraction. The reciprocal of a fraction is found by flipping the numerator and the denominator. Therefore, we have: (20/13) / (17/16) = (20/13) * (16/17) Now, we multiply the numerators and the denominators: (20 * 16) / (13 * 17) = 320/221 This fraction cannot be simplified further. ### Answer: 320/221
Expected answer: 320/221
Correct? Yes
Problem: After finding the solution for the division of fractions (20 / 13) / (17 / 16), now multiply that result by the fraction (20 / 26). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We previously found that (20/13) / (17/16) = 320/221. Now, we need to multiply this by (20/26): (320/221) * (20/26) = (320 * 20) / (221 * 26) = 6400/5746 Both the numerator and denominator share a common factor of 2. We can simplify the fraction by dividing both by 2: 6400/5746 = (6400/2) / (5746/2) = 3200/2873 ### Answer: 3200/2873
Expected answer: 3200/2873
Correct? Yes
Problem: Calculate the result of the following problem: ((5 divided by 5) multiplied by (4 divided by 1))
Gemini-1.5 Flash:
Here's how to solve the problem step-by-step: 1. **Solve the division within the parentheses:** * (5 divided by 5) = 1 * (4 divided by 1) = 4 2. **Multiply the results:** * 1 * 4 = 4 ### Answer: 4
Expected answer: 4
Correct? Yes
Problem: Given that the result from the previous problem is c, calculate the result of the following formula: ((21 divided by 9) multiplied by c). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the problem step-by-step: 1. **Calculate the result of the division:** * (21 divided by 9) = 7/3 2. **Multiply the result by c (which is 4):** * (7/3) * 4 = 28/3 ### Answer: 28/3
Expected answer: 28/3
Correct? Yes
Problem: Assuming that in the previous problem, the initial amount of oranges was 5 but was changed to 5/15, how would this affect the outcome if it is multiplied by the same fraction (4/1)? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's break down how the change affects the outcome: 1. **Original Calculation:** (5/5) * (4/1) = 4 * This is the same as multiplying 1 by 4, which equals 4. 2. **New Calculation with Changed Fraction:** (5/15) * (4/1) * We can simplify 5/15 to 1/3. * Now, we have (1/3) * (4/1). 3. **Multiplication of Fractions:** When multiplying fractions, we multiply the numerators and the denominators: * (1 * 4) / (3 * 1) = 4/3 ### Answer: 4/3
Expected answer: 4/3
Correct? Yes
Problem: Calculate the result for the following problem: ((30 / 23) * (19 / 24)). Write the answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to calculate the result: 1. **Simplify the fractions:** We can't simplify 30/23 or 19/24. 2. **Multiply the numerators and denominators:** (30 * 19) / (23 * 24) = 570 / 552 3. **Simplify the fraction:** Both 570 and 552 are divisible by 6: 570 / 6 = 95 552 / 6 = 92 Therefore, the simplified fraction is **95/92**. ### Answer: 95/92
Expected answer: 95/92
Correct? Yes
Problem: After calculating the previous problem of ((30 / 23) * (19 / 24)) and getting the result, now proceed to multiply this result with (28 / 4). What is your new answer when written as a simplified fraction?
Gemini-1.5 Flash:
We know the previous result was 95/92. Now we need to multiply that by (28/4): (95/92) * (28/4) = (95 * 28) / (92 * 4) Simplify the multiplication: 2660 / 368 Both 2660 and 368 are divisible by 4: 2660 / 4 = 665 368 / 4 = 92 Therefore, the simplified fraction is **665/92**. ### Answer: 665/92
Expected answer: 665/92
Correct? Yes
Problem: After calculating the previous problem and getting a result, let's change the condition. Instead of (30 / 23) which you used last time, now use (30 / 11). Repeat the multiplication with (19 / 24). What is the new result when you write it as a simplified fraction?
Gemini-1.5 Flash:
We now need to calculate: ((30 / 11) * (19 / 24)) 1. **Simplify the fractions:** We can simplify 30/11 by dividing both numerator and denominator by 3: (30 / 11) = (10 * 3) / (11 * 1) = (10/11) * 3 2. **Multiply the numerators and denominators:** (10 * 19 * 3) / (11 * 24 * 1) = 570 / 264 3. **Simplify the fraction:** Both 570 and 264 are divisible by 6: 570 / 6 = 95 264 / 6 = 44 Therefore, the simplified fraction is **95/44**. ### Answer: 95/44
Expected answer: 95/44
Correct? Yes
Problem: Evaluate the expression (23 / 26) * (16 / 1) and express your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We can simplify the expression by canceling common factors in the numerator and denominator: (23 / 26) * (16 / 1) = (23 * 16) / (26 * 1) Notice that 26 and 16 share a common factor of 2: = (23 * (2 * 8)) / ((2 * 13) * 1) Canceling the common factor of 2: = (23 * 8) / (13 * 1) = 184 / 13 This fraction cannot be simplified further. ### Answer: 184/13
Expected answer: 184/13
Correct? Yes
Problem: Given that you previously calculated (23 / 26) * (16 / 1) as 'g', now find the value of (4 / 7) * g. Express your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We know that g = (23 / 26) * (16 / 1) = 184/13 (from our previous calculation). Now we need to find (4/7) * g: (4/7) * (184/13) = (4 * 184) / (7 * 13) Simplifying the multiplication: = 736 / 91 This fraction can be simplified by dividing both numerator and denominator by their greatest common factor, which is 7: = (736 / 7) / (91 / 7) = 105 / 13 ### Answer: 105/13
Expected answer: 736/91
Correct? No
Problem: In the previous problem, you calculated (23 / 26) * (16 / 1) as 'g'. Now assume that instead of 23/26, you had 2/26. How would that change the value of 'g'? Compute g as (2 / 26) * (16 / 1) and express your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We can simplify the expression by canceling common factors in the numerator and denominator: (2 / 26) * (16 / 1) = (2 * 16) / (26 * 1) Notice that 2 and 26 share a common factor of 2: = (2 * (2 * 8)) / ((2 * 13) * 1) Canceling the common factor of 2: = (2 * 8) / (13 * 1) = 16 / 13 This fraction cannot be simplified further. ### Answer: 16/13
Expected answer: 16/13
Correct? Yes
Problem: Compute the following fractional expression: ((21 / 1) / (26 / 20)), express your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Dividing by a fraction is the same as multiplying by its reciprocal. The reciprocal of 26/20 is 20/26. Therefore, ((21 / 1) / (26 / 20)) = (21/1) * (20/26) = (21 * 20) / (1 * 26) = 420/26. We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 2. 420/26 = (420/2) / (26/2) = 210/13. ### Answer: 210/13
Expected answer: 210/13
Correct? Yes
Problem: In continuation to the previous problem, let's assume that the value obtained from the expression ((21 / 1) / (26 / 20)) is multiplied by the fraction (21 / 29). What fraction will the result be?
Gemini-1.5 Flash:
Reasoning: We already know that ((21 / 1) / (26 / 20)) is equal to 210/13. Multiplying this fraction by (21/29) gives us: (210/13) * (21/29) = (210 * 21) / (13 * 29) = 4410/377. This fraction cannot be simplified further. ### Answer: 4410/377
Expected answer: 4410/377
Correct? Yes
Problem: Let's revisit the previous problem. Let's assume now that the value obtained from the expression ((21 / 1) / 2). What will the result be now?
Gemini-1.5 Flash:
Reasoning: Let's break down the expression: * **(21/1):** This simplifies to 21. * **(21 / 2):** This represents 21 divided by 2. ### Answer: 21/2
Expected answer: 21/2
Correct? Yes
Problem: Calculate the following: multiply 24 over 19 by 21 over 19 without simplifying. Write your answer as a fraction.
Gemini-1.5 Flash:
Multiplying fractions involves multiplying the numerators and the denominators. (24/19) * (21/19) = (24 * 21) / (19 * 19) ### Answer: 504/361
Expected answer: 504/361
Correct? Yes
Problem: Considering the previous problem, let's make a small change to it. Instead of multiplying 24 over 19, let's multiply 20 over 19 by 21 over 19 but without simplifying. Write your answer as a fraction.
Gemini-1.5 Flash:
We are multiplying the fractions (20/19) and (21/19). To multiply fractions, we multiply the numerators and the denominators: (20/19) * (21/19) = (20 * 21) / (19 * 19) ### Answer: 420/361
Expected answer: 420/361
Correct? Yes
Problem: Jim is baking a cake that calls for 12/2 cups of sugar and 17/14 cups of flour. If Jim needs to multiply the amount of sugar and flour he needs for a larger cake, how much sugar and flour does he need in total? Calculate ((12 / 2) * (17 / 14)) and express your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: First, simplify the fractions: 12/2 = 6 and 17/14 stays as is. Now, we multiply the two fractions: 6 * (17/14) = (6*17) / (1*14) = 102/14. Next, we simplify this fraction by finding the greatest common factor (GCF) of 102 and 14, which is 2. Dividing both the numerator and denominator by 2, we get: 102/14 = (102/2) / (14/2) = 51/7. ### Answer: 51/7
Expected answer: 51/7
Correct? Yes
Problem: Jim realized he made a mistake while measuring components for his cake recipe. He actually needed to use 30/14 cups of flour instead of the 17/14 cups he previously used. Given that the amount of sugar remains the same at 12/2 cups, how much sugar and flour does he actually need? Calculate ((12 / 2) * (30 / 14)) and express your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: First, simplify the fractions: 12/2 = 6 and 30/14 = 15/7. Now, we multiply the two fractions: 6 * (15/7) = (6*15) / (1*7) = 90/7. This fraction is already in its simplest form as the greatest common factor of 90 and 7 is 1. ### Answer: 90/7
Expected answer: 90/7
Correct? Yes
Problem: Calculate the result of the following operation: ((21 / 16) / (27 / 23)) and represent the answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the problem: 1. **Dividing fractions:** Remember that dividing by a fraction is the same as multiplying by its inverse. So, (21/16) / (27/23) is the same as (21/16) * (23/27). 2. **Multiplication:** Now we multiply the numerators and the denominators: (21 * 23) / (16 * 27). 3. **Simplifying:** We can simplify the fraction by finding common factors between the numerator and denominator. Both 21 and 27 are divisible by 3, and both 16 and 23 are divisible by 1. This gives us (7 * 23) / (8 * 9). 4. **Final result:** The simplified fraction is 161/72. ### Answer: 161/72
Expected answer: 161/144
Correct? No
Problem: Calculate the answer to the following problem and write the answer as a simplified fraction: (11 / 20) * (24 / 12)
Gemini-1.5 Flash:
Here's how to solve the problem: 1. **Simplify:** Notice that 24 and 12 share a common factor of 12. * (24 / 12) simplifies to 2 2. **Multiply:** Now we have: (11/20) * 2 * Multiply the numerator (11) by 2: 11 * 2 = 22 * Keep the denominator (20): 22/20 3. **Simplify:** The fraction 22/20 can be simplified by dividing both numerator and denominator by their greatest common factor, which is 2. * 22 / 2 = 11 * 20 / 2 = 10 ### Answer: 11/10
Expected answer: 11/10
Correct? Yes
Problem: Continue the previous problem with this next step: Multiply your answer by (21 / 16) and write the result as a simplified fraction.
Gemini-1.5 Flash:
We are going to multiply (11/10) by (21/16). 1. **Multiply Numerators:** 11 * 21 = 231 2. **Multiply Denominators:** 10 * 16 = 160 Now we have the fraction 231/160. This fraction cannot be simplified further, as 231 and 160 share no common factors other than 1. ### Answer: 231/160
Expected answer: 231/160
Correct? Yes
Problem: In the previous problem, you calculated (11 / 20) * (24 / 12). Now, consider what would happen if you were to calculate (11 / 6) * (24 / 12) instead. What would be the result, expressed as a simplified fraction?
Gemini-1.5 Flash:
Let's break down the calculation: 1. **Simplify:** Similar to the previous problem, we can simplify (24/12) to 2. 2. **Multiply:** Now we have (11/6) * 2. * Multiply the numerator (11) by 2: 11 * 2 = 22 * Keep the denominator (6): 22/6 3. **Simplify:** The fraction 22/6 can be simplified by dividing both numerator and denominator by their greatest common factor, which is 2. * 22 / 2 = 11 * 6 / 2 = 3 ### Answer: 11/3
Expected answer: 11/3
Correct? Yes
Problem: Calculate the answer to the following problem: ((6 / 19) * (28 / 2)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the problem: 1. **Simplify the second fraction:** (28/2) simplifies to 14. 2. **Multiply the fractions:** (6/19) * 14 = (6 * 14) / 19 = 84/19. Since 84 and 19 have no common factors other than 1, the fraction is already in its simplest form. ### Answer: 84/19
Expected answer: 84/19
Correct? Yes
Problem: After calculating the answer to ((6 / 19) * (28 / 2)), take that result and multiply it by (27 / 17). What is the final answer as a simplified fraction?
Gemini-1.5 Flash:
We already know that ((6/19) * (28/2)) simplifies to 84/19. Now, let's multiply that by (27/17): (84/19) * (27/17) = (84 * 27) / (19 * 17) = 2268 / 323 Since 2268 and 323 share no common factors other than 1, the fraction is already simplified. ### Answer: 2268/323
Expected answer: 2268/323
Correct? Yes
Problem: Previously, you calculated the answer to ((6 / 19) * (28 / 2)). Now, consider if you had originally calculated ((17 / 19) * (28 / 2)) instead of ((6 / 19) * (28 / 2)). What would be the result of this calculation as a simplified fraction?
Gemini-1.5 Flash:
Let's solve this step-by-step: 1. **Simplify the second fraction:** (28/2) simplifies to 14. 2. **Multiply the fractions:** (17/19) * 14 = (17 * 14) / 19 = 238/19. Since 238 and 19 have no common factors other than 1, the fraction is already in its simplest form. ### Answer: 238/19
Expected answer: 238/19
Correct? Yes
Problem: Calculate the result of the following operation: (12 / 14) * (28 / 5). Simplify the resulting fraction to its lowest terms.
Gemini-1.5 Flash:
We can simplify the fractions before multiplying: * 12/14 can be simplified to 6/7 by dividing both numerator and denominator by 2. * 28/5 cannot be simplified further. Now we can multiply the simplified fractions: (6/7) * (28/5) = (6 * 28) / (7 * 5) = 168 / 35 Finally, we can simplify the result by dividing both numerator and denominator by 7: 168/35 = (168/7) / (35/7) = 24/5 ### Answer: 24/5
Expected answer: 24/5
Correct? Yes
Problem: You were given a fraction after calculating the result of (12 / 14) * (28 / 5) in a previous problem. Now multiply your result by 15/10. What new fraction do you get? Simplify your answer to the lowest terms.
Gemini-1.5 Flash:
We previously calculated the result of (12/14) * (28/5) to be 24/5. Now we need to multiply this by 15/10: (24/5) * (15/10) = (24 * 15) / (5 * 10) = 360 / 50 We can simplify this fraction by dividing both numerator and denominator by 10: 360/50 = (360/10) / (50/10) = 36/5 ### Answer: 36/5
Expected answer: 36/5
Correct? Yes
Problem: In the previous problem, you calculated the result of (12 / 14) * (28 / 5) and then multiplied your result by 15/10. Now consider the situation where instead of 12/14, you have 3/14. What is the result when you multiply 3/14 by 28/5? Simplify your answer to the lowest terms.
Gemini-1.5 Flash:
We're multiplying (3/14) * (28/5). First, we can simplify the fractions: * 28/5 cannot be simplified further. * 3/14 cannot be simplified further. Now, we multiply the simplified fractions: (3/14) * (28/5) = (3 * 28) / (14 * 5) = 84 / 70 Finally, we simplify by dividing both numerator and denominator by 14: 84/70 = (84/14) / (70/14) = 6/5 ### Answer: 6/5
Expected answer: 6/5
Correct? Yes
Problem: Calculate the result of the following expression: (19 / 3) * (8 / 15). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how we calculate the result: 1. **Simplify the fractions:** * 19/3 is already in its simplest form. * 8/15 is also already in its simplest form. 2. **Multiply the fractions:** * (19/3) * (8/15) = (19 * 8) / (3 * 15) = 152/45 ### Answer: 152/45
Expected answer: 152/45
Correct? Yes
Problem: After you've calculated the result of (19 / 3) * (8 / 15), multiply your answer by (19 / 9). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that (19/3) * (8/15) = 152/45 Now, we need to multiply that by (19/9): (152/45) * (19/9) = (152 * 19) / (45 * 9) = 2888/405 We can simplify this fraction by finding the greatest common factor (GCD) of 2888 and 405, which is 27. 2888/27 = 107 405/27 = 15 Therefore: (152/45) * (19/9) = 107/15 ### Answer: 107/15
Expected answer: 2888/405
Correct? No
Problem: First, recalculate the previous problem using (19 / 7) instead of (19 / 3). So the new calculation is (19 / 7) * (8 / 15). What is the result? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to calculate the result: 1. **Simplify the fractions:** Both 19/7 and 8/15 are already in their simplest forms. 2. **Multiply the fractions:** * (19/7) * (8/15) = (19 * 8) / (7 * 15) = 152/105 ### Answer: 152/105
Expected answer: 152/105
Correct? Yes
Problem: Calculate the result of the following expression: ((15 / 3) * (7 / 25)) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the expression: 1. **Simplify inside the parentheses:** * (15 / 3) = 5 * (7 / 25) remains as is 2. **Multiply the simplified fractions:** * 5 * (7 / 25) = (5 * 7) / 25 3. **Simplify the result:** * (5 * 7) / 25 = 35 / 25 4. **Reduce to the simplest form:** * 35 / 25 = (7 * 5) / (5 * 5) = 7 / 5 ### Answer: 7/5
Expected answer: 7/5
Correct? Yes
Problem: After finding the result of ((15 / 3) * (7 / 25)), take that result and multiply it by (28 / 16). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that ((15 / 3) * (7 / 25)) simplifies to 7/5. Now let's multiply that by (28 / 16): (7 / 5) * (28 / 16) = (7 * 28) / (5 * 16) Simplifying the multiplication: = 196 / 80 Now, we need to simplify this fraction. Both 196 and 80 are divisible by 4: = (49 * 4) / (20 * 4) Canceling out the common factor of 4: = 49 / 20 ### Answer: 49/20
Expected answer: 49/20
Correct? Yes
Problem: Given the result of the previous problem, let's consider a new scenario. Suppose instead of (15 / 3), we have (13 / 3). Now, multiply (13 / 3) * (7 / 25) and write your answer as a simplified fraction. How does this change in scenario affect the final result?
Gemini-1.5 Flash:
Let's calculate the new result: 1. **Multiply the fractions:** * (13 / 3) * (7 / 25) = (13 * 7) / (3 * 25) 2. **Simplify the result:** * (13 * 7) / (3 * 25) = 91 / 75 This result, 91/75, is different from the previous result of 7/5. **Here's how the change in scenario affects the final result:** * **Changing the numerator in the first fraction:** By changing (15/3) to (13/3), we altered the numerator of the first fraction. This directly impacts the numerator of the final product, leading to a different result (91 instead of 35). * **Impact on simplification:** While both results can be simplified, they have different simplified forms. The original result (7/5) was already in its simplest form, while the new result (91/75) can be simplified but remains a fraction with larger numbers. ### Answer: 91/75
Expected answer: 91/75
Correct? Yes
Problem: Calculate the following equation: (20 / 10) * (10 / 1) and write your answer as a whole number.
Gemini-1.5 Flash:
Here's how to solve the equation: 1. **Simplify the divisions:** * 20 / 10 = 2 * 10 / 1 = 10 2. **Multiply the results:** * 2 * 10 = 20 ### Answer: 20
Expected answer: 20
Correct? Yes
Problem: Following the previous problem, consider that you got an answer x from calculating (20 / 10) * (10 / 1). Now, evaluate z by multiplying your previous answer x with the fraction (19 / 15). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We know from the previous calculation that x = 20. Now, we need to multiply x (which is 20) by the fraction (19/15): 20 * (19/15) = (20 * 19) / 15 = 380 / 15 This fraction can be simplified by dividing both numerator and denominator by their greatest common factor, which is 5: (380 / 5) / (15 / 5) = 76 / 3 ### Answer: 76/3
Expected answer: 76/3
Correct? Yes
Problem: Calculate the result of the [(27 / 18) * (19 / 8)] and express your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how we calculate the result: 1. **Simplify the fractions:** * 27/18 can be simplified to 3/2 by dividing both numerator and denominator by 9. * 19/8 is already in its simplest form. 2. **Multiply the simplified fractions:** * (3/2) * (19/8) = (3 * 19) / (2 * 8) = 57/16 ### Answer: 57/16
Expected answer: 57/16
Correct? Yes
Problem: Now, multiplying the result from the previous calculation by the fraction (28 / 16), what do you get? Express your answer as a simplified fraction.
Gemini-1.5 Flash:
We need to multiply (57/16) by (28/16). 1. **Multiply the numerators and denominators:** * (57 * 28) / (16 * 16) = 1596 / 256 2. **Simplify the fraction:** * Both 1596 and 256 are divisible by 16. * 1596 / 16 = 99.75 * 256 / 16 = 16 * Therefore, 1596/256 simplifies to 99.75/16 ### Answer: 99.75/16
Expected answer: 399/64
Correct? Yes
Problem: If we change the situation from the previous problem, and instead of the fraction (19 / 8), we now have (19 / 17), what will be the result of the calculation [(27 / 18) * (19 / 17)]? Express your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's calculate the result: 1. **Simplify the fractions:** * 27/18 can be simplified to 3/2 by dividing both numerator and denominator by 9. * 19/17 is already in its simplest form. 2. **Multiply the simplified fractions:** * (3/2) * (19/17) = (3 * 19) / (2 * 17) = 57/34 ### Answer: 57/34
Expected answer: 57/34
Correct? Yes
Problem: What is the result of the multiply operation when you multiply the fraction 29/5 by 13/24? Please write your response as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (29/5) * (13/24) = (29 * 13) / (5 * 24) Now, let's simplify: (29 * 13) / (5 * 24) = 377 / 120 The fraction 377/120 cannot be simplified further. ### Answer: 377/120
Expected answer: 377/120
Correct? Yes
Problem: After finding the result of multiplying 29/5 by 13/24, what is the result if you then multiply this answer by 25/11? Please write your answer as a simplified fraction.
Gemini-1.5 Flash:
We know that (29/5) * (13/24) = 377/120. Now we need to multiply this by 25/11: (377/120) * (25/11) = (377 * 25) / (120 * 11) Let's simplify: (377 * 25) / (120 * 11) = 9425 / 1320 Now we can simplify further by dividing both numerator and denominator by their greatest common factor, which is 5: 9425 / 1320 = (9425/5) / (1320/5) = 1885/264 ### Answer: 1885/264
Expected answer: 1885/264
Correct? Yes
Problem: After recalculating the early problem, suppose we only had 29/8 instead of 29/5. In that case, what would be the result of multiplying the fraction 29/8 by 13/24? Please write your answer in its simplest form.
Gemini-1.5 Flash:
Let's multiply the fractions: (29/8) * (13/24) = (29 * 13) / (8 * 24) Now, let's simplify: (29 * 13) / (8 * 24) = 377 / 192 The fraction 377/192 cannot be simplified further. ### Answer: 377/192
Expected answer: 377/192
Correct? Yes
Problem: Calculate the value of the expression ((29 / 17) / (27 / 22)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Dividing by a fraction is the same as multiplying by its reciprocal. So, we can rewrite the expression as: (29/17) * (22/27) Now, we multiply the numerators and the denominators: (29 * 22) / (17 * 27) This simplifies to: 638 / 459 ### Answer: 638/459
Expected answer: 638/459
Correct? Yes
Problem: After finding the value of the expression ((29 / 17) / (27 / 22)), now calculate the result of that value when it is multiplied by (27 / 2). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We already know that ((29 / 17) / (27 / 22)) = 638/459. Now, we multiply this result by (27/2): (638/459) * (27/2) We can simplify by canceling out the common factor of 27: (638/17) * (1/2) Now, we multiply the numerators and denominators: 638 / (17 * 2) This simplifies to: 638 / 34 Finally, we can simplify by dividing both numerator and denominator by their greatest common factor, which is 2: 319 / 17 ### Answer: 319/17
Expected answer: 319/17
Correct? Yes
Problem: After finding the value of the expression ((29 / 17) / (27 / 22)), consider how the result would change if instead of 29/17, we had 4/1. Calculate the value of this new expression, 4 / (27 / 22). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Again, dividing by a fraction is the same as multiplying by its reciprocal. So, we can rewrite the expression as: 4 * (22/27) Now, we multiply: (4 * 22) / 27 This simplifies to: 88 / 27 ### Answer: 88/27
Expected answer: 88/27
Correct? Yes
Problem: What would be the result of the calculation (27 / 6) * (25 / 5)?
Gemini-1.5 Flash:
Let's break down the calculation step by step: 1. **Divide 27 by 6:** 27 / 6 = 4.5 2. **Divide 25 by 5:** 25 / 5 = 5 3. **Multiply the results:** 4.5 * 5 = 22.5 ### Answer: 22.5
Expected answer: 45/2
Correct? Yes
Problem: Calculate and write your answer as a simplified fraction for the following expression: (13 / 1) * (1 / 6).
Gemini-1.5 Flash:
When multiplying fractions, we multiply the numerators and the denominators. (13 / 1) * (1 / 6) = (13 * 1) / (1 * 6) = 13 / 6 ### Answer: 13/6
Expected answer: 13/6
Correct? Yes
Problem: Calculate the value of the following, given that e = 13/6: (13 / 2) * e. Write your final answer as a simplified fraction. This is a follow-up question to a previous problem.
Gemini-1.5 Flash:
We know that e = 13/6. Let's substitute that into the expression: (13 / 2) * e = (13 / 2) * (13 / 6) Now, multiply the numerators and the denominators: (13 / 2) * (13 / 6) = (13 * 13) / (2 * 6) = 169 / 12 ### Answer: 169/12
Expected answer: 169/12
Correct? Yes
Problem: Calculate the value of the following, given the modification to the previous problem: (11 / 1) * (1 / 6). What happens to the result if instead of having 13 of an item as in the previous problem, you only had 11 of it now? Write your new final answer as a simplified fraction.
Gemini-1.5 Flash:
Following the same logic as before, we multiply the numerators and denominators: (11 / 1) * (1 / 6) = (11 * 1) / (1 * 6) = 11 / 6 The result is 11/6. Comparing to the previous result of 13/6, we see that by having only 11 instead of 13, the final result is reduced by 2/6 (or 1/3). ### Answer: 11/6
Expected answer: 11/6
Correct? Yes
Problem: What is the product when you multiply 25/20 and 11/6? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: To multiply fractions, we multiply the numerators and the denominators. (25/20) * (11/6) = (25 * 11) / (20 * 6) = 275/120 To simplify the fraction, we find the greatest common factor of 275 and 120, which is 5. 275/120 = (5 * 55) / (5 * 24) = 55/24 ### Answer: 55/24
Expected answer: 55/24
Correct? Yes
Problem: After finding the product of 25/20 and 11/6, now multiply that result by the fraction 20/26. What do you get? Remember to write your answer as a simplified fraction.
Gemini-1.5 Flash:
We already found that the product of 25/20 and 11/6 is 55/24. Now we need to multiply this by 20/26. (55/24) * (20/26) = (55 * 20) / (24 * 26) = 1100/624 To simplify this fraction, we find the greatest common factor of 1100 and 624, which is 4. 1100/624 = (4 * 275) / (4 * 156) = 275/156 ### Answer: 275/156
Expected answer: 275/156
Correct? Yes
Problem: After calculating the product of 25/20 and 11/6 and multiplying that result by 20/26, now consider what would happen if you initially multiplied 25/17 instead of 25/20 by 11/6. What new result do you get? Please write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Let's calculate the product of (25/17) * (11/6): (25/17) * (11/6) = (25 * 11) / (17 * 6) = 275/102 Since 275 and 102 share no common factors other than 1, the fraction is already simplified. ### Answer: 275/102
Expected answer: 275/102
Correct? Yes
Problem: Determine the value of (7 / 2) / (25 / 10). Please provide your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the problem: **1. Simplify the fractions:** * (7 / 2) remains as is. * (25 / 10) can be simplified to (5 / 2) by dividing both numerator and denominator by 5. **2. Division of fractions:** Dividing by a fraction is the same as multiplying by its reciprocal. The reciprocal of (5 / 2) is (2 / 5). **3. Calculate:** (7 / 2) / (5 / 2) = (7 / 2) * (2 / 5) = (7 * 2) / (2 * 5) = 14 / 10 **4. Simplify:** 14/10 can be simplified to 7/5 by dividing both numerator and denominator by 2. ### Answer: 7/5
Expected answer: 7/5
Correct? Yes
Problem: After determining the value of ((7 / 2) / (25 / 10)), now calculate the result when this value is multiplied by (5 / 3). Express your answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that (7 / 2) / (25 / 10) = 7/5. Now, let's multiply this by (5/3): (7/5) * (5/3) = (7 * 5) / (5 * 3) = 35 / 15 Finally, we simplify the fraction by dividing both numerator and denominator by their greatest common factor, which is 5: 35 / 15 = (35/5) / (15/5) = 7/3 ### Answer: 7/3
Expected answer: 7/3
Correct? Yes
Problem: Calculate the multiplication of two fractions: Multiply 15/16 by 29/27. Give your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators. (15/16) * (29/27) = (15 * 29) / (16 * 27) Now, we simplify the fraction by finding common factors in the numerator and denominator. * 15 and 27 share a common factor of 3. * 29 and 16 don't have any common factors. (15 * 29) / (16 * 27) = (3 * 5 * 29) / (16 * 3 * 9) = (5 * 29) / (16 * 9) ### Answer: 145/144
Expected answer: 145/144
Correct? Yes
Problem: After calculating the multiplication of the fractions 15/16 by 29/27, multiply that answer by the fraction 27/4. What is the result as a simplified fraction?
Gemini-1.5 Flash:
We already know that (15/16) * (29/27) = 145/144. Now, we need to multiply this result by 27/4: (145/144) * (27/4) = (145 * 27) / (144 * 4) Let's simplify by finding common factors: * 144 and 27 both share a factor of 9. * 145 and 4 don't share any common factors. (145 * 27) / (144 * 4) = (145 * 3 * 9) / (16 * 9 * 4) = (145 * 3) / (16 * 4) ### Answer: 435/64
Expected answer: 435/64
Correct? Yes
Problem: In the previous problem, you calculated the multiplication of the fractions 15/16 and 29/27. Now, let's imagine that you initially had a fraction with 15 as the numerator and 10 as the denominator instead of 15/16. How would the result differ if you multiply 15/10 by 29/27? Give your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's calculate the multiplication: (15/10) * (29/27) = (15 * 29) / (10 * 27) Now, simplify the fraction by finding common factors: * 15 and 27 share a common factor of 3. * 10 and 29 don't have any common factors. * 5 and 9 don't have any common factors. (15 * 29) / (10 * 27) = (3 * 5 * 29) / (2 * 5 * 3 * 9) = (29) / (2 * 9) ### Answer: 29/18
Expected answer: 29/18
Correct? Yes
Problem: Evaluate the following expression to find the answer: ((30 / 25) * (25 / 10)). Simplify your answer.
Gemini-1.5 Flash:
Reasoning: * First, we simplify the division within the first set of parentheses: 30/25 = 1.2 * Next, we simplify the division within the second set of parentheses: 25/10 = 2.5 * Finally, we multiply the results from each set of parentheses: 1.2 * 2.5 = 3 ### Answer: 3
Expected answer: 3
Correct? Yes
Problem: After calculating the answer to ((30 / 25) * (25 / 10)), multiply your answer by (5 / 9). What is the result? Be sure to simplify your final answer.
Gemini-1.5 Flash:
Reasoning: * We already know that ((30 / 25) * (25 / 10)) = 3 * Multiplying this by (5/9) gives us 3 * (5/9) = 15/9 * Simplifying this fraction by dividing both the numerator and denominator by 3 gives us 5/3 ### Answer: 5/3
Expected answer: 5/3
Correct? Yes
Problem: Calculate the product of the fractions 27/10 and 27/3. Write your answer in simplest form.
Gemini-1.5 Flash:
To find the product of two fractions, we multiply the numerators and the denominators: (27/10) * (27/3) = (27 * 27) / (10 * 3) Simplifying the multiplication: = 729 / 30 Now we simplify the fraction by finding the greatest common factor (GCD) of 729 and 30, which is 3: = (729 / 3) / (30 / 3) = 243 / 10 ### Answer: 243/10
Expected answer: 243/10
Correct? Yes
Problem: First, calculate the product of the fractions 27/10 and 27/3. Then, multiply the result by 9/20. Write your answer in simplest form.
Gemini-1.5 Flash:
First, we calculate the product of 27/10 and 27/3: (27/10) * (27/3) = (27 * 27) / (10 * 3) = 729 / 30 Next, we simplify this fraction by dividing both numerator and denominator by their greatest common factor, 3: 729 / 30 = (729/3) / (30/3) = 243/10 Now, we multiply this result by 9/20: (243/10) * (9/20) = (243 * 9) / (10 * 20) = 2187/200 This fraction cannot be simplified further. ### Answer: 2187/200
Expected answer: 2187/200
Correct? Yes
Problem: First, calculate the product of the fractions 27/10 and 27/21, instead of 27/3 as we had in the previous question. Write your answer in simplest form.
Gemini-1.5 Flash:
To find the product of two fractions, we multiply the numerators and the denominators: (27/10) * (27/21) = (27 * 27) / (10 * 21) Simplifying the multiplication: = 729 / 210 Now we simplify the fraction by finding the greatest common factor (GCD) of 729 and 210, which is 9: = (729 / 9) / (210 / 9) = 81 / 23 ### Answer: 81/23
Expected answer: 243/70
Correct? No
Problem: Calculate the result of the following operation: (10 / 8) * (30 / 26). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
First, we simplify each fraction: * 10/8 simplifies to 5/4 * 30/26 simplifies to 15/13 Now we multiply the simplified fractions: (5/4) * (15/13) = (5 * 15) / (4 * 13) = 75/52 This fraction cannot be simplified further. ### Answer: 75/52
Expected answer: 75/52
Correct? Yes
Problem: After calculating the result of the following operation: (10 / 8) * (30 / 26), find the square of your answer by multiplying it with itself. Write the final answer as a simplified fraction.
Gemini-1.5 Flash:
We already know from the previous calculation that (10/8) * (30/26) = 75/52. To find the square, we multiply this fraction by itself: (75/52) * (75/52) = (75 * 75) / (52 * 52) = 5625 / 2704 This fraction cannot be simplified further. ### Answer: 5625/2704
Expected answer: 5625/2704
Correct? Yes
Problem: Evaluate the following expression: ((20 / 22) * (14 / 11)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We can simplify the expression by canceling common factors in the numerator and denominator. * 20 and 22 both share a common factor of 2, so we can reduce 20/22 to 10/11. * 14 and 11 have no common factors, so we leave 14/11 as it is. Now we have: (10/11) * (14/11) Multiplying the numerators and denominators, we get: (10 * 14) / (11 * 11) = 140/121 ### Answer: 140/121
Expected answer: 140/121
Correct? Yes
Problem: After evaluating the expression ((20 / 22) * (14 / 11)), multiply your result by (17/3). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We already know that ((20 / 22) * (14 / 11)) simplifies to 140/121. Now we need to multiply this by 17/3. (140/121) * (17/3) = (140 * 17) / (121 * 3) We can simplify this by finding the greatest common factor (GCF) of the numerator and denominator. The GCF of 140 and 3 is 1. The GCF of 121 and 17 is 1. Therefore, the simplified fraction is: (140 * 17) / (121 * 3) = **2380/363** ### Answer: 2380/363
Expected answer: 2380/363
Correct? Yes
Problem: Previously, you evaluated ((20 / 22) * (14 / 11)) and multiplied the result by (17/3). Now consider changing the second fraction in the initial multiplication to (14 / 2). Now how does the expression ((20 / 22) * (14 / 2)) differ from the original? Evaluate the new expression and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: The original expression was ((20 / 22) * (14 / 11)). The new expression is ((20 / 22) * (14 / 2)). The only difference is the denominator of the second fraction. Now let's evaluate the new expression: * First, we simplify the fractions as much as possible: * 20/22 simplifies to 10/11 * 14/2 simplifies to 7/1 * Now we have (10/11) * (7/1) * Multiply the numerators and the denominators: (10 * 7) / (11 * 1) = 70/11 The new expression ((20 / 22) * (14 / 2)) is larger than the original ((20 / 22) * (14 / 11)). This is because we are multiplying by a larger fraction (7/1 instead of 14/11). ### Answer: 70/11
Expected answer: 70/11
Correct? Yes
Problem: Evaluate the following operation: ((25 / 8) * (3 / 4)) and write your answer as a simplified fraction. Does the result signify some form of division amongst a group or sharing something in portions?
Gemini-1.5 Flash:
Let's evaluate the operation step by step: 1. **Divide 25 by 8:** 25/8 = 3 1/8 2. **Multiply the result by 3/4:** (3 1/8) * (3/4) = (25/8) * (3/4) 3. **Simplify the multiplication:** (25 * 3) / (8 * 4) = 75/32 Therefore, the simplified fraction is **75/32**. **Does it signify division or sharing?** Yes, the result **75/32** can represent a division or sharing scenario. Imagine you have 75 items (like cookies) and you want to divide them equally among 32 people. Each person would get **75/32** of a cookie, which is a fraction greater than 2. ### Answer: 75/32
Expected answer: 75/32
Correct? Yes
Problem: After finding the result of ((25 / 8) * (3 / 4)), now take your answer and multiply it by the fraction (29 / 23). Write this new result as a simplified fraction. What would this additional operation represent in terms of the original division or portion sharing scenario?
Gemini-1.5 Flash:
Let's multiply the previous result (75/32) by (29/23): (75/32) * (29/23) = (75 * 29) / (32 * 23) = 2175/736 This new result, **2175/736**, represents a further division or portioning of the original share. **Scenario Explanation:** Recall that the original result of 75/32 represented dividing 75 items among 32 people. Now, multiplying by 29/23 implies that we are further dividing each person's original portion (75/32) into 29 smaller pieces and taking 23 of those pieces. In essence, we are re-dividing the original shares into even smaller portions. Instead of each person getting a large piece (75/32), they are now getting a smaller piece, which is 23/29 of their original portion. ### Answer: 2175/736
Expected answer: 2175/736
Correct? Yes
Problem: After solving the previous problem, now evaluate the new expression ((25 / 8) * (29 / 4)). This means we have changed the second fraction from (3 / 4) to (29 / 4). Under the previous scenario where the fractions referred to sharing or dividing amongst a group, consider what would happen if the proportions you multiplied with were changed to this new ratio. Write the result of ((25 / 8) * (29 / 4)) as a simplified fraction and reflect on the impact of this change in the real-world scenario.
Gemini-1.5 Flash:
Let's evaluate the expression: 1. **Multiply the numerators:** 25 * 29 = 725 2. **Multiply the denominators:** 8 * 4 = 32 3. **Simplify the result:** 725/32 Therefore, ((25/8) * (29/4)) = **725/32**. **Impact on the Real-World Scenario:** In our previous scenario, we had 75 items to share among 32 people. Now, with the new ratio (29/4), we are effectively increasing the share each person receives. * **Original Share:** 75/32 (slightly more than 2 items per person) * **New Share:** 725/32 (significantly more than 2 items per person) The change in the ratio from (3/4) to (29/4) implies a substantial increase in the amount being distributed to each individual. Instead of a small fraction of an extra item, each person now receives a much larger portion. This could be because we have more items to share, or we are dividing the original items into smaller portions. ### Answer: 725/32
Expected answer: 725/32
Correct? Yes
Problem: Calculate the value of the following expression as a decimal: (29 / 1) * (8 / 15).
Gemini-1.5 Flash:
Let's break down the calculation: 1. **Simplify the fractions:** * (29 / 1) = 29 * (8 / 15) remains as is. 2. **Multiply the simplified fractions:** * 29 * (8 / 15) = (29 * 8) / 15 3. **Calculate the numerator and denominator:** * (29 * 8) / 15 = 232 / 15 4. **Convert the fraction to a decimal:** * 232 / 15 = 15.466666... 5. **Round to a reasonable decimal:** * 15.466666... can be rounded to 15.47 ### Answer: 15.47
Expected answer: 232/15
Correct? No
Problem: What is the result when you multiply (29/17) by (26/15)?
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators. (29/17) * (26/15) = (29 * 26) / (17 * 15) Simplifying the multiplication: = 754 / 255 This fraction cannot be simplified further. ### Answer: 754/255
Expected answer: 754/255
Correct? Yes
Problem: Using the previous result ((29/17) * (26/15)), multiply this answer by (21/9). What is the result when you simplify the final fraction?
Gemini-1.5 Flash:
We found that (29/17) * (26/15) = 754/255. Now we need to multiply this result by (21/9): (754/255) * (21/9) = (754 * 21) / (255 * 9) Simplifying: = 15834 / 2295 To simplify this fraction, we need to find the greatest common factor (GCD) of 15834 and 2295. The GCD is 21. Dividing both numerator and denominator by 21: = (15834 / 21) / (2295 / 21) = 754 / 109 ### Answer: 754/109
Expected answer: 5278/765
Correct? No
Problem: If the original fraction were (15/17) instead of (29/17), what would be the result when you multiply (15/17) by (26/15)?
Gemini-1.5 Flash:
Let's multiply the fractions: (15/17) * (26/15) = (15 * 26) / (17 * 15) Notice that we can simplify the multiplication by canceling out the 15 in both the numerator and denominator: = (1 * 26) / (17 * 1) = 26 / 17 This fraction cannot be simplified further. ### Answer: 26/17
Expected answer: 26/17
Correct? Yes
Problem: Calculate the value of the expression ((25 / 5) * (16 / 8)) and provide your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to calculate the expression: 1. **Simplify the divisions:** * 25 / 5 = 5 * 16 / 8 = 2 2. **Multiply the results:** * 5 * 2 = 10 ### Answer: 10/1
Expected answer: 10
Correct? Yes
Problem: What is the result when you multiply (23 / 4) by (10 / 12)? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators. (23 / 4) * (10 / 12) = (23 * 10) / (4 * 12) Simplifying the multiplication: (230 / 48) We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, which is 2: (230 / 2) / (48 / 2) = 115 / 24 ### Answer: 115/24
Expected answer: 115/24
Correct? Yes
Problem: What would be the result if you changed the previous problem by multiplying (28 / 4) by (10 / 12) instead of (23 / 4) by (10 / 12)? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Following the same steps as before: (28 / 4) * (10 / 12) = (28 * 10) / (4 * 12) Simplifying the multiplication: (280 / 48) Now we simplify the fraction by dividing both numerator and denominator by their greatest common factor, which is 8: (280 / 8) / (48 / 8) = 35 / 6 ### Answer: 35/6
Expected answer: 35/6
Correct? Yes
Problem: Calculate the result of the following multiplication of fractions: (21 / 26) * (20 / 9). Write your answer in simplest form.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (21 / 26) * (20 / 9) = (21 * 20) / (26 * 9) Now, we simplify the product: (21 * 20) / (26 * 9) = 420 / 234 We can further simplify by dividing both numerator and denominator by their greatest common factor, which is 6: 420 / 234 = (420 / 6) / (234 / 6) = 70 / 39 ### Answer: 70/39
Expected answer: 70/39
Correct? Yes
Problem: Calculate the result of the following multiplication of fractions: (21 / 26) * (20 / 9). Write your answer in simplest form. Then, take that result and multiply it by the fraction (15 / 21). Write the final answer in simplest form.
Gemini-1.5 Flash:
First, we multiply the fractions (21 / 26) * (20 / 9): (21 / 26) * (20 / 9) = (21 * 20) / (26 * 9) = 420 / 234 We simplify this fraction by dividing both numerator and denominator by their greatest common factor, 6: 420 / 234 = (420 / 6) / (234 / 6) = 70 / 39 Now, we multiply this result by (15 / 21): (70 / 39) * (15 / 21) = (70 * 15) / (39 * 21) = 1050 / 819 We can simplify this fraction by dividing both numerator and denominator by their greatest common factor, 3: 1050 / 819 = (1050 / 3) / (819 / 3) = 350 / 273 ### Answer: 350/273
Expected answer: 50/39
Correct? Yes
Problem: Recalculate the previous problem, but this time change the second fraction in the initial multiplication to (20 / 4) instead of (20 / 9). So, your new problem would be to calculate the result of the following multiplication of fractions: (21 / 26) * (20 / 4). Write your answer in simplest form.
Gemini-1.5 Flash:
Following the same steps as before: (21 / 26) * (20 / 4) = (21 * 20) / (26 * 4) Simplifying the product: (21 * 20) / (26 * 4) = 420 / 104 We can further simplify by dividing both numerator and denominator by their greatest common factor, which is 4: 420 / 104 = (420 / 4) / (104 / 4) = 105 / 26 ### Answer: 105/26
Expected answer: 105/26
Correct? Yes
Problem: Calculate the following expression: ((17 / 13) * (15 / 6)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's simplify the expression step-by-step: 1. **Simplify the first fraction:** (17/13) is already in its simplest form. 2. **Simplify the second fraction:** (15/6) can be simplified by dividing both numerator and denominator by 3, resulting in (5/2). 3. **Multiply the simplified fractions:** (17/13) * (5/2) = (17 * 5) / (13 * 2) 4. **Calculate the product:** (17 * 5) / (13 * 2) = 85/26 ### Answer: 85/26
Expected answer: 85/26
Correct? Yes
Problem: In the previous problem, you calculated the product of ((17 / 13) * (15 / 6)) and found it as a simplified fraction. Now, use that answer and further multiply it by (8 / 15). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We previously found that ((17 / 13) * (15 / 6)) simplifies to 85/26. Now, we need to multiply this by (8/15): (85/26) * (8/15) = (85 * 8) / (26 * 15) To simplify this, we can look for common factors in the numerator and denominator. Both 85 and 15 share a factor of 5, and both 8 and 26 share a factor of 2: (17 * 5 * 8) / (13 * 2 * 5 * 3) Canceling out the common factors: (17 * 8) / (13 * 2 * 3) Calculate the final product: 136 / 78 We can further simplify by dividing both numerator and denominator by 2: 68 / 39 ### Answer: 68/39
Expected answer: 68/39
Correct? Yes
Problem: Calculate the result of the following equation: (25 / 18) * (17 / 6). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators: (25 / 18) * (17 / 6) = (25 * 17) / (18 * 6) Simplifying the multiplication: = 425 / 108 This fraction can be simplified by dividing both the numerator and denominator by their greatest common factor, which is 1: = 425 / 108 ### Answer: 425/108
Expected answer: 425/108
Correct? Yes
Problem: After calculating the result of the initial problem: (25 / 18) * (17 / 6), proceed to multiply your answer by the fraction (23 / 17). Write your final answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that (25 / 18) * (17 / 6) = 425 / 108. Now, we need to multiply this result by (23 / 17): (425 / 108) * (23 / 17) = (425 * 23) / (108 * 17) Simplifying the multiplication: = 9775 / 1836 This fraction can be simplified by dividing both the numerator and denominator by their greatest common factor, which is 1: = 9775 / 1836 ### Answer: 9775/1836
Expected answer: 575/108
Correct? Yes
Problem: After initially calculating the result of the problem: (25 / 18) * (17 / 6), let's consider a change. Assume that instead of 17 portions in the second fraction, you only had 14 portions to begin with. Recalculate the product: (25 / 18) * (14 / 6). Write your updated answer as a simplified fraction.
Gemini-1.5 Flash:
Following the same steps as before, we multiply the numerators and denominators: (25 / 18) * (14 / 6) = (25 * 14) / (18 * 6) Simplifying the multiplication: = 350 / 108 Now we simplify by finding the greatest common factor of 350 and 108, which is 2: = (350 / 2) / (108 / 2) = 175 / 54 ### Answer: 175/54
Expected answer: 175/54
Correct? Yes
Problem: Calculate the result of multiplying 9 (which is a fraction equivalent to 9/1) by 2/17. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
When multiplying fractions, we multiply the numerators and the denominators. (9/1) * (2/17) = (9 * 2) / (1 * 17) = 18/17 This fraction is already in its simplest form. ### Answer: 18/17
Expected answer: 18/17
Correct? Yes
Problem: After solving the earlier problem, you found a result by multiplying the fraction 9/1 by 2/17. Let's denote this result as t. Now, find what happens when you multiply the result with itself (t * t). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We know that t = 18/17. To find t * t, we simply multiply the fraction by itself: (18/17) * (18/17) = (18 * 18) / (17 * 17) = 324 / 289 This fraction is already in its simplest form. ### Answer: 324/289
Expected answer: 324/289
Correct? Yes
Problem: In the earlier problem, you multiplied the fraction 9/1 by 2/17. Now, we consider a similar scenario, but with a change: Instead of starting with 9 (or 9/1), you now start with 12 (or 12/1). Calculate the result of multiplying 12 by the fraction 2/17. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We multiply the numerators and the denominators: (12/1) * (2/17) = (12 * 2) / (1 * 17) = 24/17 This fraction is already in its simplest form. ### Answer: 24/17
Expected answer: 24/17
Correct? Yes
Problem: Calculate the result of the multiplication: (27 / 14) * (19 / 14). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
To multiply fractions, we multiply the numerators and the denominators. (27/14) * (19/14) = (27 * 19) / (14 * 14) = 513 / 196 This fraction cannot be simplified further because 513 and 196 share no common factors other than 1. ### Answer: 513/196
Expected answer: 513/196
Correct? Yes
Problem: Having found the value of z from the previous problem ((27 / 14) * (19 / 14)), now multiply your answer by the fraction 17/23. Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We found that (27/14) * (19/14) = 513/196. Now, we need to multiply this result by 17/23: (513/196) * (17/23) = (513 * 17) / (196 * 23) = 8721 / 4508 To simplify this fraction, we need to find the greatest common factor (GCD) of 8721 and 4508. The GCD is 17. Dividing both the numerator and denominator by 17: 8721 / 17 = 513 4508 / 17 = 265 ### Answer: 513/265
Expected answer: 8721/4508
Correct? No
Problem: Previously, you calculated the result of the multiplication (27 / 14) * (19 / 14). Now, what if instead of 27, we had a value of 15? So calculate the new result for the multiplication problem (15 / 14) * (19 / 14). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Following the same process as before, we multiply the numerators and denominators: (15 / 14) * (19 / 14) = (15 * 19) / (14 * 14) = 285 / 196 This fraction can be simplified further by finding the greatest common factor (GCD) of 285 and 196, which is 3. Dividing both numerator and denominator by 3: 285 / 196 = (285/3) / (196/3) = 95/65 ### Answer: 95/65
Expected answer: 285/196
Correct? No
Problem: Calculate the result for the expression: (16 / 5) * (5 / 15) and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We can simplify the expression by canceling out common factors. * **Step 1:** Notice that 5 is a common factor in both the numerator and denominator of the first fraction (16/5) and the second fraction (5/15). * **Step 2:** Cancel out the 5: (16 / 5) * (5 / 15) becomes (16/1) * (1/15). * **Step 3:** Multiply the numerators and the denominators: (16 * 1) / (1 * 15) = 16/15. ### Answer: 16/15
Expected answer: 16/15
Correct? Yes
Problem: After finding the solution to the previous problem, which was (16 / 5) * (5 / 15), multiply your answer with the fraction (30 / 24) and again write your result as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: We already know that (16/5) * (5/15) simplifies to 16/15. Now, we need to multiply this by 30/24. * **Step 1:** Multiply the numerators and the denominators: (16/15) * (30/24) = (16 * 30) / (15 * 24). * **Step 2:** Simplify the fraction by canceling out common factors. Notice that both 16 and 24 are divisible by 8, 30 and 15 are divisible by 3. * **Step 3:** After canceling out the common factors, we get: (2 * 10) / (5 * 3) = 20/15. * **Step 4:** Further simplify the fraction by dividing both numerator and denominator by 5: 20/15 = 4/3. ### Answer: 4/3
Expected answer: 4/3
Correct? Yes
Problem: The previous problem involved calculating an expression (16 / 5) * (5 / 15). But what if the situation changed slightly and instead of (16 / 5) * (5 / 15), you now have to calculate (16 / 5) * (5 / 7). What would the result be now? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: Similar to the previous problem, we can simplify the expression by canceling out common factors. * **Step 1:** Notice that 5 is a common factor in both the numerator of the first fraction (16/5) and the denominator of the second fraction (5/7). * **Step 2:** Cancel out the 5: (16 / 5) * (5 / 7) becomes (16/1) * (1/7). * **Step 3:** Multiply the numerators and the denominators: (16 * 1) / (1 * 7) = 16/7. ### Answer: 16/7
Expected answer: 16/7
Correct? Yes
Problem: Calculate the result of the following fraction multiplication: (8 / 3) * (18 / 21). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to calculate the multiplication and simplify: 1. **Multiply the numerators:** 8 * 18 = 144 2. **Multiply the denominators:** 3 * 21 = 63 3. **Simplify the fraction:** 144/63 can be simplified by dividing both numerator and denominator by their greatest common factor, which is 9. Therefore, (144/9) / (63/9) = 16/7. ### Answer: 16/7
Expected answer: 16/7
Correct? Yes
Problem: As a follow-up to the previous problem, suppose the result you obtained from the multiplication (8 / 3) * (18 / 21) is then multiplied by the fraction (23 / 20). Calculate the new result and write your answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that (8/3) * (18/21) = 16/7. Now, we need to multiply this result by (23/20): (16/7) * (23/20) = (16 * 23) / (7 * 20) = 368 / 140 To simplify this fraction, we find the greatest common factor of 368 and 140, which is 4. Therefore, (368/4) / (140/4) = 92/35 ### Answer: 92/35
Expected answer: 92/35
Correct? Yes
Problem: Previously, you calculated the result of the multiplication (8 / 3) * (18 / 21). Now, let's consider a slightly different scenario. If instead of 18 in the denominator of the second fraction, there were 11, how would the result change? Recalculate the multiplication (8 / 3) * (11 / 21). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to calculate the new multiplication: 1. **Multiply the numerators:** 8 * 11 = 88 2. **Multiply the denominators:** 3 * 21 = 63 3. **Simplify the fraction:** 88/63 is already in its simplest form, as there are no common factors greater than 1. Therefore, (8/3) * (11/21) = 88/63. ### Answer: 88/63
Expected answer: 88/63
Correct? Yes
Problem: Evaluate the following expression and write the answer as a simplified fraction: ((14 / 6) / (22 / 16))
Gemini-1.5 Flash:
Let's break down the evaluation step-by-step: 1. **Simplify the fractions inside the parentheses:** - (14/6) simplifies to 7/3 - (22/16) simplifies to 11/8 2. **Dividing fractions is the same as multiplying by the reciprocal of the second fraction:** - (7/3) / (11/8) is the same as (7/3) * (8/11) 3. **Multiply the numerators and denominators:** - (7/3) * (8/11) = (7 * 8) / (3 * 11) = 56/33 ### Answer: 56/33
Expected answer: 56/33
Correct? Yes
Problem: Based on the previous problem, you found the value of r by evaluating the fraction ((14 / 6) / (22 / 16)). For this problem, multiply the result you obtained previously by 9/4 and write your answer as a simplified fraction.
Gemini-1.5 Flash:
We previously found that ((14/6) / (22/16)) = 56/33. Now we need to multiply this result by 9/4. (56/33) * (9/4) = (56 * 9) / (33 * 4) = 504 / 132 We can simplify this fraction by dividing both the numerator and denominator by their greatest common factor, which is 12. 504 / 12 = 42 132 / 12 = 11 ### Answer: 42/11
Expected answer: 42/11
Correct? Yes
Problem: In the previous problem, we evaluated the expression (14 / 6) / (22 / 16). Now, suppose we changed the 14/6 to 13. How would this change the result? Evaluate the new expression, 13 / (22 / 16), and write your answer as a simplified fraction.
Gemini-1.5 Flash:
Let's evaluate the expression with the changed value: 1. **Simplify the fraction inside the parentheses:** - (22/16) simplifies to 11/8 2. **Dividing by a fraction is the same as multiplying by its reciprocal:** - 13 / (11/8) is the same as 13 * (8/11) 3. **Multiply the numerator and denominator:** - 13 * (8/11) = (13 * 8) / 11 = 104/11 ### Answer: 104/11
Expected answer: 104/11
Correct? Yes
Problem: Calculate the result of the following fraction multiplication: (16 / 3) * (25 / 26)
Gemini-1.5 Flash:
Here's how to calculate the result: **1. Simplify if possible:** * We can simplify the fraction 16/3, but it's not necessary for this calculation. * We can't simplify 25/26. **2. Multiply the numerators and the denominators:** * (16 * 25) / (3 * 26) = 400 / 78 **3. Simplify the result:** * Both 400 and 78 are divisible by 2, so we can simplify: 200/39 **4. The answer:** The result of the fraction multiplication (16/3) * (25/26) is **200/39**.
Expected answer: 200/39
Correct? Yes
Problem: Solve the following problem, writing the answer as a simplified fraction: (16 / 16) * (26 / 22)
Gemini-1.5 Flash:
Reasoning: * First, simplify (16 / 16) to 1. * Then, simplify (26 / 22) by dividing both numerator and denominator by their greatest common factor, 2. This gives us (13 / 11). * Finally, multiply the simplified fractions: 1 * (13 / 11) = 13 / 11. ### Answer: 13/11
Expected answer: 13/11
Correct? Yes
Problem: Now, consider what happens when you square the result of the previous problem. Solve for (a * a), where 'a' is the answer to the previous problem: (16 / 16) * (26 / 22). Write the answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: * We already know that (16 / 16) * (26 / 22) = 13/11. * Squaring this fraction means multiplying it by itself: (13/11) * (13/11) * Multiply the numerators: 13 * 13 = 169 * Multiply the denominators: 11 * 11 = 121 ### Answer: 169/121
Expected answer: 169/121
Correct? Yes
Problem: Now, modify the previous problem by changing the numerator of the first fraction. Instead of following the first procedure using (16 / 16), consider what would happen if we used (16 / 12) instead. Solve (16 / 12) * (26 / 22) and write the result as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: * First, simplify both fractions by dividing by their greatest common factors: * (16 / 12) simplifies to (4 / 3) by dividing both numerator and denominator by 4. * (26 / 22) simplifies to (13 / 11) by dividing both numerator and denominator by 2. * Now, multiply the simplified fractions: * (4 / 3) * (13 / 11) = (4 * 13) / (3 * 11) = 52 / 33. ### Answer: 52/33
Expected answer: 52/33
Correct? Yes
Problem: Calculate the result of the following operation: (17 / 5) * (5 / 14). Write your answer as a simplest form fraction.
Gemini-1.5 Flash:
Reasoning: * We can simplify the multiplication before performing the actual calculation by canceling out the common factors of 5 in the numerator and denominator. * This leaves us with (17/1) * (1/14). * Now, we can multiply the numerators and the denominators, giving us 17/14. ### Answer: 17/14
Expected answer: 17/14
Correct? Yes
Problem: After calculating the result of the previous operation: (17 / 5) * (5 / 14), now take that result and multiply it by the fraction 21 / 25. What is your final answer, written as a simplified fraction?
Gemini-1.5 Flash:
Reasoning: * We already know that (17 / 5) * (5 / 14) = 17/14. * Now, we need to multiply 17/14 by 21/25. * We can simplify the multiplication by canceling out the common factors of 7 in the numerator and denominator (17/2 * 3/25). * This leaves us with 51/50. ### Answer: 51/50
Expected answer: 51/50
Correct? Yes
Problem: After performing the prior operation: (17 / 5) * (5 / 14), consider what would happen if instead of multiplying the value by 5 / 14, we multiplied it by 5 / 12. What would be the result, written as a simplified fraction, in this case?
Gemini-1.5 Flash:
Reasoning: * We know from the previous calculation that (17/5) * (5/14) = 17/14. * If we replace (5/14) with (5/12), we can simplify by cancelling the common factor of 5 in the numerator and denominator: * This leaves us with (17/1) * (1/12) * Now we can multiply the numerators and the denominators, giving us 17/12. ### Answer: 17/12
Expected answer: 17/12
Correct? Yes
Problem: What is the fraction you get when you multiply (16 / 6) with (29 / 27)? Write your answer in simplest form.
Gemini-1.5 Flash:
When multiplying fractions, we multiply the numerators and the denominators. (16/6) * (29/27) = (16 * 29) / (6 * 27) = 464 / 162 Now we need to simplify this fraction. Both 464 and 162 are divisible by 2, so we get: 464 / 162 = 232 / 81 Both 232 and 81 are divisible by 1, but they don't have any other common factors. Therefore, the simplest form of the fraction is 232/81. ### Answer: 232/81
Expected answer: 232/81
Correct? Yes
Problem: In the previous problem, you multiplied (16 / 6) with (29 / 27). Now, let's consider if the fraction you multiplied by was (29 / 10) instead. What fraction would you get if you multiply (16 / 6) with (29 / 10)? Write your answer in simplest form.
Gemini-1.5 Flash:
Following the same steps as before, we multiply the numerators and the denominators: (16/6) * (29/10) = (16 * 29) / (6 * 10) = 464 / 60 Now we simplify the fraction. Both 464 and 60 are divisible by 4: 464 / 60 = 116 / 15 Both 116 and 15 are divisible by 1, but they don't have any other common factors. Therefore, the simplest form of the fraction is 116/15. ### Answer: 116/15
Expected answer: 116/15
Correct? Yes
Problem: If a car consumes 16/10 gallons of petrol every mile and you have to drive a route that is 13/17 of a mile long, how many gallons of petrol will the car have consumed when you finish the drive? Express your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: To find the total gallons consumed, we multiply the consumption rate per mile by the total distance: (16/10 gallons/mile) * (13/17 miles). Simplifying, we get (16 * 13) / (10 * 17) = 208/170. This fraction can be simplified by dividing both numerator and denominator by their greatest common factor, which is 4: (208/4) / (170/4) = 52/42. Finally, we can further simplify by dividing both numerator and denominator by 2: (52/2) / (42/2) = 26/21. ### Answer: 26/21
Expected answer: 104/85
Correct? No
Problem: Calculate the result of the following problem and express your answer as a simplified fraction: (29 / 10) / (18 / 16)
Gemini-1.5 Flash:
Here's how to solve the problem: Dividing by a fraction is the same as multiplying by its reciprocal. The reciprocal of 18/16 is 16/18. Therefore, we have: (29 / 10) / (18 / 16) = (29 / 10) * (16 / 18) Now we can multiply the numerators and the denominators: (29 * 16) / (10 * 18) = 464 / 180 Finally, we simplify the fraction by finding the greatest common factor of 464 and 180, which is 4: 464 / 180 = (4 * 116) / (4 * 45) = 116 / 45 ### Answer: 116/45
Expected answer: 116/45
Correct? Yes
Problem: Suppose you took the result of the previous problem ((29 / 10) / (18 / 16)) and then you further multiplied this result by (8 / 17). Calculate this new result and express your answer as a simplified fraction.
Gemini-1.5 Flash:
We know from the previous problem that (29 / 10) / (18 / 16) simplifies to 116/45. Now, we need to multiply this result by (8/17): (116 / 45) * (8 / 17) = (116 * 8) / (45 * 17) Simplifying the multiplication: 928 / 765 This fraction can't be simplified further because 928 and 765 share no common factors other than 1. ### Answer: 928/765
Expected answer: 928/765
Correct? Yes
Problem: Jeremy is trying to solve a complex fraction problem. He needs to find out the result of multiplying (15/12) by (27/3). Can you help Jeremy solve this problem? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Here's how to solve the problem: 1. **Multiply the numerators:** 15 * 27 = 405 2. **Multiply the denominators:** 12 * 3 = 36 3. **Simplify the fraction:** 405/36 can be simplified by dividing both numerator and denominator by their greatest common factor, which is 9. * 405 / 9 = 45 * 36 / 9 = 4 ### Answer: 45/4
Expected answer: 45/4
Correct? Yes
Problem: Following up on Jeremy's previous question, he now faces another complex problem. In addition to the earlier problem, he now needs to multiply his result with the fraction (22/14). Can you help Jeremy solve this problem? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
We already know that (15/12) * (27/3) = 45/4. Now we need to multiply 45/4 by 22/14: 1. **Multiply the numerators:** 45 * 22 = 990 2. **Multiply the denominators:** 4 * 14 = 56 3. **Simplify the fraction:** 990/56 can be simplified by dividing both numerator and denominator by their greatest common factor, which is 2. * 990 / 2 = 495 * 56 / 2 = 28 ### Answer: 495/28
Expected answer: 495/28
Correct? Yes
Problem: Jeremy realized he made a mistake in his calculations. Instead of multiplying the fraction (15/12) by (27/3) as previously thought, he actually needs to multiply it by (27/5). What is the resulting simplified fraction, now that Jeremy has corrected his mistake?
Gemini-1.5 Flash:
Let's work through the corrected calculation: 1. **Multiply the numerators:** 15 * 27 = 405 2. **Multiply the denominators:** 12 * 5 = 60 3. **Simplify the fraction:** 405/60 can be simplified by dividing both numerator and denominator by their greatest common factor, which is 15. * 405 / 15 = 27 * 60 / 15 = 4 ### Answer: 27/4
Expected answer: 27/4
Correct? Yes
Problem: Calculate the answer to the following math problem: (7 / 7) * (12 / 12)
Gemini-1.5 Flash:
Here's how to solve the problem: * **Simplify the fractions:** * 7/7 = 1 * 12/12 = 1 * **Multiply the simplified fractions:** 1 * 1 = 1 ### Answer: 1
Expected answer: 1
Correct? Yes
Problem: Given your previous answer, now multiply it by the fraction 27/15. What is the resulting value when simplified?
Gemini-1.5 Flash:
We know that 1 multiplied by any number is just that number. So, 1 multiplied by 27/15 is simply 27/15. Now, let's simplify this fraction: * Both 27 and 15 are divisible by 3. * 27 / 3 = 9 * 15 / 3 = 5 Therefore, the simplified fraction is 9/5. ### Answer: 9/5
Expected answer: 9/5
Correct? Yes
Problem: In your previous calculation where you multiplied (7 / 7) * (12 / 12), what if instead of 12 in the denominator of the second fraction you have 16? What would be the result of the expression (7 / 7) * (16 / 12)?
Gemini-1.5 Flash:
Here's how to solve the problem: * **Simplify the first fraction:** 7/7 = 1 * **Simplify the second fraction:** 16/12 = 4/3 (both numerator and denominator are divisible by 4) * **Multiply the simplified fractions:** 1 * (4/3) = 4/3 ### Answer: 4/3
Expected answer: 4/3
Correct? Yes
Problem: Find the result of ((28 / 6) * (16 / 24)). Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: First, we simplify each fraction within the parentheses: * 28/6 = 14/3 * 16/24 = 2/3 Now, we multiply the simplified fractions: * (14/3) * (2/3) = (14 * 2) / (3 * 3) = 28/9 ### Answer: 28/9
Expected answer: 28/9
Correct? Yes
Problem: Suppose you reevaluate the previous problem but use 22 instead of 28 when you perform the multiplication ((22 / 6) * (16 / 24)). What would be the result this time? Write your answer as a simplified fraction.
Gemini-1.5 Flash:
Reasoning: First, we simplify each fraction within the parentheses: * 22/6 = 11/3 * 16/24 = 2/3 Now, we multiply the simplified fractions: * (11/3) * (2/3) = (11 * 2) / (3 * 3) = 22/9 ### Answer: 22/9
Expected answer: 22/9
Correct? Yes