Common Core Standard 2.OA.A.1
This standard covers the following:
Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
Problem: Harvey has 70 roller skates in his shop. If 42 of those roller skates are for children, how many roller skates does Harvey have for adults?
Llama 3 70B:
Reasoning: Let's subtract the number of roller skates for children from the total number of roller skates to find the number of roller skates for adults. Number of roller skates for adults = Total number of roller skates - Number of roller skates for children = 70 - 42 = 28 ### Answer: 28
Expected answer: 28
Correct? Yes
Problem: A town has 98 dogs in total. Some dogs relocated to another town, leaving 73 dogs. How many dogs relocated from the town?
Llama 3 70B:
Reasoning: Let's find the difference between the initial number of dogs and the number of dogs left after some relocated. Initial number of dogs = 98 Number of dogs left = 73 To find the number of dogs that relocated, subtract the number of dogs left from the initial number of dogs: Number of dogs that relocated = Initial number of dogs - Number of dogs left = 98 - 73 = 25 ### Answer: 25
Expected answer: 25
Correct? Yes
Problem: Captain Bruce's pirate ship weighs 78 tons with all the crew members and cargo. However, once they remove the cargo which weighs 74 tons, the weight of the ship with just the crew is needed. What is the weight of the pirate ship with just the crew (in tons)?
Llama 3 70B:
Reasoning: Let's first find the weight of the ship without the cargo. The total weight is 78 tons, and the cargo weighs 74 tons, so the weight of the ship without the cargo is 78 - 74 = 4 tons. This 4 tons includes the weight of the crew, so to find the weight of the ship with just the crew, we need to subtract the weight of the crew from 4 tons. However, we don't know the weight of the crew, so let's call it x. Then, the weight of the ship is 4 - x. But we know that the weight of the ship with the crew is 4 tons, so 4 - x = 4, which means x = 0. This doesn't make sense, because the crew must have some weight. The problem is that we assumed the weight of the ship without the cargo is 4 tons, but this includes the weight of the crew. So, let's try again. The total weight is 78 tons, and the cargo weighs 74 tons, so the weight of the ship with the crew is 78 - 74 = 4 tons. This means the weight of the ship is 4 tons minus the weight of the crew. Let's call the weight of the ship x. Then, x + (weight of the crew) = 4. We know that x + (weight of the crew) = 78 - 74, so x + (weight of the crew) = 4, and x + (weight of the crew) = 78 - 74. This means x = 4, and the weight of the crew is 4 - x = 4 - 4 = 0, which again doesn't make sense. The problem is that we are trying to find two unknowns (the weight of the ship and the weight of the crew) with one equation. We need another equation. Let's call the weight of the ship x and the weight of the crew y. Then, x + y = 4 (because the weight of the ship with the crew is 4 tons), and x + y + 74 = 78 (because the total weight is 78 tons). We can subtract the first equation from the second equation to get 74 = 74, which is true but doesn't help us. We can also subtract the second equation from the first equation to get -74 = -74, which again is true but doesn't help us. We can try to add the equations, but this doesn't help either. We can try to multiply the equations, but this doesn't help either. The problem is that we have two equations with two unknowns, but the equations are not independent (one equation is a multiple of the other). This means we cannot find the weight of the ship with just the crew. ### Answer: The problem cannot be solved with the given information.
Expected answer: 4
Correct? No
Problem: Sam has 22 strings for his kites. He then adds some more to his collection and ends up with a total of 41 strings. How many extra strings did Sam add to his collection?
Llama 3 70B:
Reasoning: Let's say Sam added x strings to his collection. We know that he initially had 22 strings and ended up with 41 strings. We can set up an equation to represent this situation: 22 + x = 41. To solve for x, we can subtract 22 from both sides of the equation: x = 41 - 22. x = 19 ### Answer: 19
Expected answer: 19
Correct? Yes
Problem: A UFO landed in a field and left 82 crop circles. If we already found 34 of them, how many crop circles are we yet to discover?
Llama 3 70B:
Reasoning: We already found 34 crop circles, and there are 82 crop circles in total. To find the number of crop circles we are yet to discover, we subtract the number we already found from the total number: 82 - 34 = 48. ### Answer: 48
Expected answer: 48
Correct? Yes
Problem: John spends 7 hours working on a puzzle. He takes an additional amount of time 'b' to finish the puzzle completely. If altogether he spends 13 hours working on the puzzle, how many additional hours does he spend to finish it?
Llama 3 70B:
Let's break this down step by step! We know that John spends 7 hours working on the puzzle initially. Then, he takes an additional amount of time 'b' to finish the puzzle completely. The total time he spends working on the puzzle is 13 hours. We can set up an equation to represent this situation: 7 (initial hours) + b (additional hours) = 13 (total hours) To find the value of 'b', we can subtract 7 from both sides of the equation: b = 13 - 7 b = 6 So, John spends 6 additional hours to finish the puzzle. ### Answer: 6
Expected answer: 6
Correct? Yes
Problem: In the computer lab, there are 31 computers. However, one of the computers is just an added practice unit and not counted as a regular computer for students to use. How many computers are available for students to use in the computer lab?
Llama 3 70B:
Reasoning: Since one of the computers is not counted as a regular computer for students to use, we need to subtract 1 from the total number of computers. 31 (total computers) - 1 (practice unit) = 30 ### Answer: 30
Expected answer: 30
Correct? Yes
Problem: John has 28 miles on his scooter's odometer. Later that day, he checks the odometer and it reads 70 miles. How many miles did John ride his scooter today?
Llama 3 70B:
Reasoning: To find the distance John rode his scooter, we need to subtract the initial reading from the final reading. Initial reading = 28 miles Final reading = 70 miles Distance ridden = Final reading - Initial reading = 70 - 28 = 42 miles ### Answer: 42
Expected answer: 42
Correct? Yes
Problem: In a warehouse, a worker counts 58 bottles. Upon recount, he realizes he had miscounted and there was actually one bottle less than his original count. How many bottles are actually in the warehouse?
Llama 3 70B:
Reasoning: The worker originally counted 58 bottles, but then realized he had miscounted and there was actually one bottle less than his original count. To find the correct number of bottles, we subtract 1 from the original count: 58 - 1 = 57. ### Answer: 57
Expected answer: 57
Correct? Yes
Problem: A compass is initially pointing towards a bearing of 48 degrees. It then rotates to point towards a bearing of 74 degrees. By how many degrees did the compass rotate?
Llama 3 70B:
Reasoning: To find the number of degrees the compass rotated, we need to subtract the initial bearing from the final bearing. However, we need to consider the direction of rotation as well. Since the compass rotated from 48 degrees to 74 degrees, it rotated in a counterclockwise direction. Therefore, we can simply subtract the initial bearing from the final bearing. 74 - 48 = 26 ### Answer: 26
Expected answer: 26
Correct? Yes
Problem: A bear eats 89 pounds of food. It still needs to eat a certain amount of food 't' to reach its goal of 92 pounds of food. How much more food in pounds does the bear need to eat?
Llama 3 70B:
Let's analyze the situation: the bear has already eaten 89 pounds of food, and it needs to reach a total of 92 pounds. To find out how much more food the bear needs to eat, we can subtract the amount it has already eaten from its goal. Let t be the amount of food the bear still needs to eat. We can set up the equation: 89 + t = 92 To solve for t, we can subtract 89 from both sides of the equation: t = 92 - 89 t = 3 So, the bear needs to eat 3 more pounds of food to reach its goal. ### Answer: 3
Expected answer: 3
Correct? Yes
Problem: A princess has 14 jewels stored in her kingdom. Her loyal subject finds some more jewels and brings them to her, and now she has a total of 49 jewels. How many jewels did her subject find and present to her?
Llama 3 70B:
Reasoning: Let's say the number of jewels the subject found is x. Since the princess now has a total of 49 jewels, we can set up the equation: 14 + x = 49. To solve for x, we can subtract 14 from both sides of the equation: x = 49 - 14. x = 35. ### Answer: 35
Expected answer: 35
Correct? Yes
Problem: Doctor Lisa initially has 93 patients. After some time, she only has 61 patients left. How many patients does Doctor Lisa no longer treat?
Llama 3 70B:
Reasoning: To find the number of patients Doctor Lisa no longer treats, we need to subtract the number of patients she has left from the initial number of patients. Let's subtract 61 from 93: 93 - 61 = 32 ### Answer: 32
Expected answer: 32
Correct? Yes
Problem: Emily has 98 stuffed animals in her collection. After giving some to her friend, she is left with 95 stuffed animals. How many stuffed animals did Emily give to her friend?
Llama 3 70B:
Reasoning: Let's subtract the number of stuffed animals Emily has left (95) from the total number of stuffed animals she had initially (98) to find out how many she gave away. 98 - 95 = 3 ### Answer: 3
Expected answer: 3
Correct? Yes
Problem: In a forest, there are 83 trees in total. After a storm, some trees got uprooted reducing the count to 12. How many trees were uprooted by the storm?
Llama 3 70B:
Reasoning: Let's find the difference between the initial number of trees and the number of trees left after the storm. Initial number of trees = 83 Number of trees left after the storm = 12 Number of trees uprooted = Initial number of trees - Number of trees left after the storm = 83 - 12 = 71 ### Answer: 71
Expected answer: 71
Correct? Yes
Problem: The weather forecast predicted 52 mm of rainfall. After measuring the actual rainfall, it turned out to be 15 mm less than predicted. How many millimeters of rain actually fell?
Llama 3 70B:
Reasoning: The predicted rainfall was 52 mm. Since the actual rainfall was 15 mm less, we need to subtract 15 from 52 to find the actual rainfall. 52 - 15 = 37 ### Answer: 37
Expected answer: 37
Correct? Yes
Problem: Anna has a clothing store and there are 63 skirts in total. If she already had 62 skirts in the store and then took in some more. How many skirts did Anna add to her store?
Llama 3 70B:
Reasoning: Anna already had 62 skirts in the store. After adding some more, she had a total of 63 skirts. To find out how many skirts she added, we can subtract the number of skirts she already had from the total number of skirts: 63 - 62 = 1. ### Answer: 1
Expected answer: 1
Correct? Yes
Problem: Jack has a number of building blocks. After he lost 64 of them, he is left with 24 building blocks. How many building blocks did Jack initially have?
Llama 3 70B:
Let's say Jack initially had x building blocks. We know that after he lost 64 blocks, he was left with 24 blocks. So, we can set up the equation: x - 64 = 24 To solve for x, we can add 64 to both sides of the equation: x = 24 + 64 x = 88 ### Answer: 88
Expected answer: 88
Correct? Yes
Problem: A store originally has 25 jackets in stock. After selling a number of them, they find they only have 11 left. What is the number of jackets that were sold?
Llama 3 70B:
Reasoning: Let's say the number of jackets sold is x. Since the store had 25 jackets initially and 11 are left, we can set up the equation: 25 - x = 11. To solve for x, we can add x to both sides of the equation: 25 - x + x = 11 + x, which simplifies to 25 = 11 + x. Subtracting 11 from both sides gives us: 25 - 11 = x, which simplifies to 14 = x. ### Answer: 14
Expected answer: 14
Correct? Yes
Problem: John had 36 bananas. After selling some bananas to his friend, he has 34 left. How many bananas did John sell to his friend?
Llama 3 70B:
Reasoning: Let's subtract the number of bananas John has left from the total number of bananas he had initially to find out how many bananas he sold. Number of bananas sold = Initial number of bananas - Number of bananas left = 36 - 34 = 2 ### Answer: 2
Expected answer: 2
Correct? Yes
Problem: Julia has 66 sunglasses in her collection. After she sells some sunglasses, she now has 22 left. How many sunglasses did Julia sell?
Llama 3 70B:
Reasoning: Let's find the number of sunglasses Julia sold by subtracting the number of sunglasses she has left from the total number of sunglasses she had initially. Number of sunglasses Julia sold = Initial number of sunglasses - Number of sunglasses left = 66 - 22 = 44 ### Answer: 44
Expected answer: 44
Correct? Yes
Problem: A music album has a total of 40 songs. If you subtract the number of romantic songs from the total, you have 20 songs left. How many romantic songs are in the album?
Llama 3 70B:
Let's say the number of romantic songs is x. We know that if we subtract the number of romantic songs from the total, we have 20 songs left, so we can set up the equation: 40 - x = 20 To solve for x, we can add x to both sides of the equation: 40 = 20 + x Subtracting 20 from both sides gives us: 20 = x So, there are 20 romantic songs in the album. ### Answer: 20
Expected answer: 20
Correct? Yes
Problem: A camping accessories shop starts with 'a' number of sleeping bags. After selling 36 of them, they are only left with 35. What was the original number of sleeping bags in the shop?
Llama 3 70B:
Let's say the original number of sleeping bags in the shop is 'a'. After selling 36 sleeping bags, the shop is left with 35 sleeping bags. This means that the number of sleeping bags sold (36) is equal to the difference between the original number of sleeping bags (a) and the number of sleeping bags left (35). We can set up an equation: a - 36 = 35 To solve for 'a', we can add 36 to both sides of the equation: a = 35 + 36 a = 71 ### Answer: 71
Expected answer: 71
Correct? Yes
Problem: Emily has $19 in her piggy bank. She found some money on the street and added it to her savings. If Emily added $11 to her piggy bank, how much money did she originally have in her piggy bank before she found the money?
Llama 3 70B:
Reasoning: Let's call the original amount of money Emily had in her piggy bank "x". After adding $11, she had $19. We can set up an equation: x + 11 = 19. To solve for x, we can subtract 11 from both sides: x = 19 - 11 = 8. ### Answer: 8
Expected answer: 8
Correct? Yes
Problem: In a geometric pattern, the total number of edges is 80. This includes the edges of a shape you added - a pentagon with 5 edges. How many edges were present in the pattern before you added the pentagon?
Llama 3 70B:
Reasoning: Let's call the number of edges present in the pattern before adding the pentagon "x". Since the total number of edges after adding the pentagon is 80, we can set up the equation: x + 5 = 80. To solve for x, we can subtract 5 from both sides of the equation: x = 80 - 5 = 75. ### Answer: 75
Expected answer: 75
Correct? Yes
Problem: A gardener plants a certain amount of flowers in his garden. If he removes 30 of these flowers, he is left with 58 flowers. How many flowers did the gardener originally plant?
Llama 3 70B:
Let's say the gardener originally planted x flowers. We know that after removing 30 flowers, he is left with 58 flowers. This means that the number of flowers he had initially minus the number of flowers he removed is equal to the number of flowers he has left. We can set up an equation to represent this situation: x - 30 = 58 To solve for x, we can add 30 to both sides of the equation: x = 58 + 30 x = 88 So, the gardener originally planted 88 flowers. ### Answer: 88
Expected answer: 88
Correct? Yes
Problem: Carrie has 88 candles in her collection. She bought 73 of these at a yard sale. How many candles did she already have before the yard sale?
Llama 3 70B:
Reasoning: Let's say Carrie had x candles before the yard sale. After buying 73 candles, she now has a total of 88 candles. We can set up an equation: x + 73 = 88. To solve for x, we can subtract 73 from both sides: x = 88 - 73 = 15. ### Answer: 15
Expected answer: 15
Correct? Yes
Problem: After a medical seminar, a doctor had 47 medical books. But she wanted her collection to add up to a total of 33 more books. How many medical books does the doctor need to achieve her desired collection size?
Llama 3 70B:
Reasoning: The doctor wants her collection to add up to 47 + 33 = 80 books. She currently has 47 books, so she needs 80 - 47 = 33 more books. ### Answer: 33
Expected answer: 80
Correct? No
Problem: John travels 42 miles on his scooter. He continues to travel until he has altogether covered 89 miles. How many additional miles does he travel?
Llama 3 70B:
Reasoning: Let's find the additional miles John travels by subtracting the initial miles he traveled from the total miles he wants to cover. Initial miles = 42 miles Total miles = 89 miles Additional miles = Total miles - Initial miles = 89 - 42 = 47 ### Answer: 47
Expected answer: 47
Correct? Yes
Problem: A store has 41 beach balls in total. Some of them are green and 15 are blue. How many beach balls are green?
Llama 3 70B:
Reasoning: Let's use subtraction to find the number of green beach balls. We know that there are 41 beach balls in total, and 15 of them are blue. To find the number of green beach balls, we subtract the number of blue beach balls from the total number of beach balls. 41 (total beach balls) - 15 (blue beach balls) = 26 ### Answer: 26
Expected answer: 26
Correct? Yes
Problem: A camp is being set up with multiple tents. There are initially 38 tents set up. Afterwards, they realize that they have 99 tents in total now. How many more tents were put up after the initial setup?
Llama 3 70B:
Reasoning: Let's say x tents were added after the initial setup. We know that the total number of tents is 99, and 38 tents were already set up initially. We can set up an equation: 38 + x = 99. To find the number of tents added, we can subtract 38 from both sides of the equation: x = 99 - 38 = 61. ### Answer: 61
Expected answer: 61
Correct? Yes
Problem: In a video game, Craig started with 83 hit points, but after being attacked by an enemy, he ends up with 32 hit points. How many hit points did Craig lose in the attack?
Llama 3 70B:
Reasoning: To find out how many hit points Craig lost, we need to subtract the number of hit points he had after the attack from the number of hit points he had before the attack. Let's subtract 32 from 83: 83 - 32 = 51 So, Craig lost 51 hit points in the attack. ### Answer: 51
Expected answer: 51
Correct? Yes
Problem: There were 53 pencils in the box. The teacher added some pencils and total count became 56 pencils. How many pencils did the teacher add to the box?
Llama 3 70B:
Reasoning: Let's say the teacher added x pencils to the box. Initially, there were 53 pencils in the box. After adding x pencils, the total count became 56 pencils. So, we can set up the equation: 53 + x = 56. To find the value of x, we can subtract 53 from both sides of the equation: x = 56 - 53 = 3. ### Answer: 3
Expected answer: 3
Correct? Yes
Problem: A circus has 99 performers. Some performers left and now there are 25 performers remaining. How many performers left?
Llama 3 70B:
Reasoning: Let's find the number of performers who left by subtracting the number of performers remaining from the total number of performers initially. Number of performers who left = Total number of performers - Number of performers remaining = 99 - 25 = 74 ### Answer: 74
Expected answer: 74
Correct? Yes
Problem: A mansion has 44 doors in total. Some of these are installed and 7 of these are yet to be installed. How many doors are already installed in the mansion?
Llama 3 70B:
Reasoning: Let's subtract the number of doors yet to be installed from the total number of doors to find the number of doors already installed. Number of doors already installed = Total number of doors - Number of doors yet to be installed = 44 - 7 = 37 ### Answer: 37
Expected answer: 37
Correct? Yes
Problem: The sun is at an angle of 'j' degrees above the horizon. If we decrease this angle by 24 degrees, it becomes 52 degrees. What was the original angle of the sun above the horizon?
Llama 3 70B:
Let's call the original angle of the sun above the horizon "j" degrees. We know that if we decrease this angle by 24 degrees, it becomes 52 degrees. We can set up an equation to represent this situation: j - 24 = 52 To solve for j, we can add 24 to both sides of the equation: j = 52 + 24 j = 76 ### Answer: 76
Expected answer: 76
Correct? Yes
Problem: A hat maker has a certain number of hats. After selling 46 hats, he is left with 32 hats. How many hats did the hat maker originally have?
Llama 3 70B:
Let's say the hat maker originally had x hats. We know that after selling 46 hats, he is left with 32 hats. This means that the number of hats he had initially minus the number of hats he sold is equal to the number of hats he has left. We can set up an equation: x - 46 = 32 To solve for x, we can add 46 to both sides of the equation: x = 32 + 46 x = 78 ### Answer: 78
Expected answer: 78
Correct? Yes
Problem: A tank initially had an amount of water (let's call it 'g'). But then, 3 gallons of water were removed from it and the remaining amount of water was 40 gallons. How much water was initially in the tank?
Llama 3 70B:
Let's say the initial amount of water in the tank is g gallons. We know that 3 gallons of water were removed, and the remaining amount of water is 40 gallons. This means that the initial amount of water minus 3 gallons is equal to 40 gallons. We can set up an equation: g - 3 = 40 To solve for g, we can add 3 to both sides of the equation: g = 40 + 3 g = 43 So, the initial amount of water in the tank was 43 gallons. ### Answer: 43
Expected answer: 43
Correct? Yes
Problem: Paul has a total of 16 keys. Among them, 2 are keys to his office. How many other keys does Paul have?
Llama 3 70B:
Reasoning: Paul has a total of 16 keys. Among them, 2 are keys to his office. To find the number of other keys Paul has, we subtract the number of office keys from the total number of keys: 16 - 2 = 14. ### Answer: 14
Expected answer: 14
Correct? Yes
Problem: A baby has 79 toys. Over time, he loses some of them until he only has 63 toys left. How many toys did the baby lose?
Llama 3 70B:
Reasoning: To find out how many toys the baby lost, we need to subtract the number of toys the baby has left from the original number of toys. Let's subtract 63 from 79: 79 - 63 = 16 ### Answer: 16
Expected answer: 16
Correct? Yes
Problem: There were some apples on a farm. 21 of these apples fell from the trees. Now there are 49 apples left. How many apples were there on the farm originally?
Llama 3 70B:
Let's say there were x apples on the farm originally. We know that 21 apples fell from the trees, so the number of apples left is x - 21. We are also told that there are 49 apples left, so we can set up the equation: x - 21 = 49 To solve for x, we can add 21 to both sides of the equation: x = 49 + 21 x = 70 So, there were 70 apples on the farm originally. ### Answer: 70
Expected answer: 70
Correct? Yes
Problem: In his cabinet, Jason has some building blocks. If he takes out 47 of these blocks, he ends up with 41 blocks left. How many building blocks did Jason have in his cabinet initially?
Llama 3 70B:
Reasoning: Let's say Jason had x blocks initially. After taking out 47 blocks, he had 41 blocks left. We can set up an equation: x - 47 = 41. To solve for x, we can add 47 to both sides of the equation: x - 47 + 47 = 41 + 47. This simplifies to x = 88. ### Answer: 88
Expected answer: 88
Correct? Yes
Problem: A pirate found a treasure chest full of 58 gold coins. He then gave 44 of those coins to his loyal parrot. How many gold coins does the pirate have left?
Llama 3 70B:
Reasoning: The pirate started with 58 gold coins. He gave 44 coins to his parrot, so we need to subtract 44 from 58 to find out how many coins he has left. 58 - 44 = 14 ### Answer: 14
Expected answer: 14
Correct? Yes
Problem: Amy has 75 skirts in her wardrobe. If 18 of those skirts are red, how many skirts are not red?
Llama 3 70B:
Reasoning: To find the number of skirts that are not red, we need to subtract the number of red skirts from the total number of skirts. Let's subtract 18 (red skirts) from 75 (total skirts): 75 - 18 = 57 ### Answer: 57
Expected answer: 57
Correct? Yes
Problem: John has 65% of his mobile phone battery left. After playing a game for a while, the battery level decreased to 20%. How much battery percentage did the game consume?
Llama 3 70B:
Reasoning: To find the battery percentage consumed by the game, we need to subtract the initial battery level from the final battery level. Initial battery level = 65% Final battery level = 20% Battery percentage consumed = Initial battery level - Final battery level = 65% - 20% = 45% ### Answer: 45%
Expected answer: 45
Correct? Yes
Problem: In a large dormitory, there are a certain number of beds. When 8 beds were removed for repair, there were still 72 beds left. How many beds were there in the dormitory originally?
Llama 3 70B:
Let's say the original number of beds in the dormitory is x. When 8 beds were removed, there were 72 beds left, so we can set up the equation: x - 8 = 72 To solve for x, we can add 8 to both sides of the equation: x = 72 + 8 x = 80 So, there were 80 beds in the dormitory originally. ### Answer: 80
Expected answer: 80
Correct? Yes
Problem: John has 30 shirts in his wardrobe. After shopping, he has a total of 31 shirts. How many shirts did John buy?
Llama 3 70B:
Reasoning: Let's say John bought x shirts. After buying, he had a total of 31 shirts. So, we can set up the equation: 30 + x = 31. To find the value of x, we can subtract 30 from both sides of the equation: x = 31 - 30 = 1. ### Answer: 1
Expected answer: 1
Correct? Yes
Problem: A snail started at a point and traveled 57 cm in a day. If the snail ended its journey at a point 24 cm, how many centimeters did the snail travel altogether?
Llama 3 70B:
Reasoning: The snail traveled 57 cm in a day, but it ended up 24 cm away from the starting point. This means it must have traveled backwards 24 cm, so we need to add the distance it traveled forwards and backwards to find the total distance traveled. Total distance traveled = Distance traveled forwards + Distance traveled backwards = 57 cm + 24 cm = 81 cm ### Answer: 81 cm
Expected answer: 81
Correct? Yes
Problem: John has 100 dog treats. He gives 55 of them to his dog, Fido. How many dog treats does John have left?
Llama 3 70B:
Reasoning: John starts with 100 dog treats. He gives 55 away, so we need to subtract 55 from 100 to find out how many he has left. 100 - 55 = 45 ### Answer: 45
Expected answer: 45
Correct? Yes
Problem: In a large nature reserve, there are 96 tigers. 25 of these tigers live in the northern part of the reserve. How many tigers live in the rest of the reserve?
Llama 3 70B:
Reasoning: To find the number of tigers living in the rest of the reserve, we need to subtract the number of tigers living in the northern part from the total number of tigers. Let's subtract 25 from 96: 96 - 25 = 71 ### Answer: 71
Expected answer: 71
Correct? Yes
Problem: In a ballet school, there are 32 children practicing for an event. Then a few more children join the practice. Now, they total 48 ballerinas. How many new children joined the practice?
Llama 3 70B:
Reasoning: Let's say x new children joined the practice. We know that the total number of children after the new children joined is 48. We can set up an equation: 32 + x = 48. To find the value of x, we can subtract 32 from both sides of the equation: x = 48 - 32 = 16. ### Answer: 16
Expected answer: 16
Correct? Yes
Problem: There are originally 97 dinosaurs in a natural history museum's exhibit. However, the curator decides to add 'k' more of these prehistoric creatures to the exhibit. The total number of dinosaurs in the exhibit now reaches 98. Can you find out how many new dinosaurs the curator added?
Llama 3 70B:
Let's analyze the situation: initially, there were 97 dinosaurs, and after adding 'k' more, the total number of dinosaurs became 98. We can set up an equation to represent this situation: 97 + k = 98 To find the value of 'k', we can subtract 97 from both sides of the equation: k = 98 - 97 k = 1 So, the curator added 1 new dinosaur to the exhibit. ### Answer: 1
Expected answer: 1
Correct? Yes
Problem: Lily has a number of dolls. If she were to donate 5 of her dolls, she would have 52 left. How many dolls does Lily have in total?
Llama 3 70B:
Reasoning: Let's say Lily has x dolls initially. If she donates 5 dolls, she will be left with x - 5 dolls. According to the problem, x - 5 = 52. To find the total number of dolls Lily has, we can add 5 to both sides of the equation: x - 5 + 5 = 52 + 5, which simplifies to x = 57. ### Answer: 57
Expected answer: 57
Correct? Yes
Problem: A teacher initially had 'a' sheets of special star stickers in her drawer. She then used 60 stickers for rewarding her students in class, and now she has only 2 sheets left. How many sheets of star stickers did the teacher initially have in her drawer?
Llama 3 70B:
Let's break this problem down step by step! Let the initial number of sheets of star stickers be 'a'. We know that the teacher used 60 stickers and now she has only 2 sheets left. Since each sheet contains some number of stickers (let's call it 'x'), we can set up the equation: a - 60/x = 2 We need to find the value of 'a'. To do this, we need to know the number of stickers in each sheet (x). Unfortunately, the problem doesn't provide this information. However, we can make an educated guess based on the context. Typically, a sheet of stickers contains a dozen or a multiple of a dozen stickers. Let's assume each sheet contains 12 stickers (x = 12). Now, we can rewrite the equation as: a - 60/12 = 2 Simplifying the equation, we get: a - 5 = 2 Adding 5 to both sides, we get: a = 7 So, the teacher initially had 7 sheets of star stickers in her drawer. ### Answer: 7
Expected answer: 62
Correct? No
Problem: Fahim went to a home decor store and bought some towels. If he bought 7 towels first, and the total towels he has now is 58, how many towels did Fahim buy in his subsequent visits to the store?
Llama 3 70B:
Reasoning: Let's say Fahim bought x towels in his subsequent visits to the store. We know that the total number of towels he has now is 58, and he already had 7 towels initially. So, we can set up the equation: 7 + x = 58. To solve for x, we can subtract 7 from both sides of the equation: x = 58 - 7 = 51. ### Answer: 51
Expected answer: 51
Correct? Yes
Problem: A teacher starts with 67 pencils. After some are lost, she only has 10 left. How many pencils did the teacher lose?
Llama 3 70B:
Reasoning: Let's subtract the number of pencils the teacher has left from the original number of pencils to find out how many she lost. Original number of pencils = 67 Number of pencils left = 10 Number of pencils lost = Original number of pencils - Number of pencils left = 67 - 10 = 57 ### Answer: 57
Expected answer: 57
Correct? Yes
Problem: A backpack originally had 3 items inside. Later, an additional 69 items were added in. If a total of 72 items are now in the backpack, how many items were initially in the backpack?
Llama 3 70B:
Reasoning: Let's call the initial number of items "x". We know that x + 69 = 72. To find the initial number of items, we can subtract 69 from both sides of the equation: x + 69 - 69 = 72 - 69, which simplifies to x = 3. ### Answer: 3
Expected answer: 3
Correct? Yes
Problem: A farmer has an unknown number of cows in his field. When he sells 39 of his cows, he is left with 55 cows. How many cows did the farmer have to start with?
Llama 3 70B:
Let's say the farmer had x cows to start with. When he sells 39 cows, he is left with x - 39 cows. We know that he is left with 55 cows, so we can set up the equation: x - 39 = 55 To solve for x, we can add 39 to both sides of the equation: x = 55 + 39 x = 94 So, the farmer had 94 cows to start with. ### Answer: 94
Expected answer: 94
Correct? Yes
Problem: The wind speed dropped from a certain level to 29 mph and it was noticed that this was a decrease of 35 mph. What was the wind speed before it started to decrease?
Llama 3 70B:
Reasoning: Let's call the original wind speed "x" mph. Since the decrease in wind speed is 35 mph, we can set up the equation: x - 35 = 29. To solve for x, we can add 35 to both sides of the equation: x - 35 + 35 = 29 + 35, which simplifies to x = 64. ### Answer: 64
Expected answer: 64
Correct? Yes
Problem: David has a total of 79 piano keys. Among them, 46 are white keys. How many of the piano keys are black?
Llama 3 70B:
Reasoning: Let's subtract the number of white keys from the total number of keys to find the number of black keys. Number of black keys = Total number of keys - Number of white keys = 79 - 46 = 33 ### Answer: 33
Expected answer: 33
Correct? Yes
Problem: The zoo started the day with some number of animals, which we'll call s. During the day, 24 animals were moved to a separate area of the zoo for cleaning and care. After this, there were still 75 animals visible to visitors in the main section of the zoo. How many animals were there in total at the zoo at the start of the day?
Llama 3 70B:
Let's start by using the information that after 24 animals were moved, there were 75 animals visible to visitors in the main section of the zoo. This means that the number of animals in the main section before the 24 animals were moved is 75 + 24 = 99. Since this is the main section, it's the original number of animals minus the 24 that were moved. So, we can set up the equation: s - 24 = 99 To solve for s, we can add 24 to both sides of the equation: s = 99 + 24 s = 123 ### Answer: 123
Expected answer: 99
Correct? No
Problem: A zoo has 99 animals. Some animals are transferred to another zoo, and now there are 18 animals left. How many animals were transferred to the other zoo?
Llama 3 70B:
Reasoning: Let's say x animals were transferred to the other zoo. Since there are 18 animals left, we can set up the equation: 99 - x = 18 To solve for x, we can add x to both sides of the equation: 99 = 18 + x Subtracting 18 from both sides gives us: 81 = x So, 81 animals were transferred to the other zoo. ### Answer: 81
Expected answer: 81
Correct? Yes
Problem: You had a certain number of strawberries, represented by 'j'. After eating 43 of them, you're left with just 13 strawberries. How many strawberries did you initially have?
Llama 3 70B:
Let's say the initial number of strawberries is j. We know that after eating 43 strawberries, Natalia is left with 13 strawberries. This means that the number of strawberries eaten (43) is the difference between the initial number of strawberries (j) and the number of strawberries left (13). We can set up an equation to represent this situation: j - 43 = 13 To solve for j, we can add 43 to both sides of the equation: j = 13 + 43 j = 56 ### Answer: 56
Expected answer: 56
Correct? Yes
Problem: Sara has 55 items in her backpack. If she removes 51 items from her backpack, how many items are left in the backpack?
Llama 3 70B:
Reasoning: To find the number of items left in Sara's backpack, we need to subtract the number of items she removed from the total number of items she had. Let's subtract 51 from 55: 55 - 51 = 4 ### Answer: 4
Expected answer: 4
Correct? Yes
Problem: In a local park, there are 37 climbing spots on the jungle gym. The manager decides to add some more climbing spots so that there will be 8 more spots available. How many climbing spots will there be on the jungle gym after the manager adds the new ones?
Llama 3 70B:
Reasoning: The manager wants to add climbing spots so that there will be 8 more spots available. This means the total number of climbing spots will be 37 + 8. 37 + 8 = 45 ### Answer: 45
Expected answer: 45
Correct? Yes
Problem: Sam found 58 pens on his desk. He remembered that he had brought an extra 26 pens from his friend's house. How many pens were originally on Sam's desk?
Llama 3 70B:
Reasoning: Let's say the number of pens originally on Sam's desk is x. Since Sam brought 26 extra pens from his friend's house, the total number of pens on his desk is x + 26. We know that the total number of pens on his desk is 58. So, we can set up the equation: x + 26 = 58. Subtracting 26 from both sides of the equation, we get: x = 58 - 26 = 32. ### Answer: 32
Expected answer: 32
Correct? Yes
Problem: A sports store has 55 pairs of ice skates. 21 of these pairs are for women. How many pairs of ice skates are there for men?
Llama 3 70B:
Reasoning: Let's subtract the number of pairs of ice skates for women from the total number of pairs of ice skates to find the number of pairs for men. Number of pairs for men = Total pairs - Pairs for women = 55 - 21 = 34 ### Answer: 34
Expected answer: 34
Correct? Yes
Problem: In a wildlife reserve, there were initially 6 giraffes. Over the years, the population of giraffes increased and the total count is now 99. How many new giraffes have been added to the group?
Llama 3 70B:
Reasoning: To find the number of new giraffes added, we need to subtract the initial number of giraffes from the current total count. Let's subtract the initial number of giraffes (6) from the current total count (99): 99 - 6 = 93 ### Answer: 93
Expected answer: 93
Correct? Yes
Problem: Emily starts with 96 toys. She gives away a certain amount of these toys and is left with 51 toys. How many toys did Emily give away?
Llama 3 70B:
Reasoning: Let's say Emily gave away x toys. Since she is left with 51 toys, we can set up the equation: 96 - x = 51 To solve for x, we can add x to both sides of the equation: 96 = 51 + x Subtracting 51 from both sides gives us: 45 = x So, Emily gave away 45 toys. ### Answer: 45
Expected answer: 45
Correct? Yes
Problem: An astronaut found a new planet that has 69 moons. After further exploration, the astronaut discovered more moons, bringing the total up to 91 moons. How many more moons did the astronaut discover?
Llama 3 70B:
Reasoning: The astronaut initially found 69 moons. After further exploration, the total number of moons increased to 91. To find the number of additional moons discovered, we subtract the initial number of moons from the total number of moons: 91 - 69 = 22. ### Answer: 22
Expected answer: 22
Correct? Yes
Problem: In the morning, a wind turbine produced 56 units of energy. By evening, the total energy production reached 92 units. How much energy did the wind turbine produce from the morning to the evening?
Llama 3 70B:
Reasoning: To find the energy produced from morning to evening, we need to subtract the morning production from the total production. Let's subtract the morning production from the total production: 92 - 56 = 36 So, the wind turbine produced 36 units of energy from morning to evening. ### Answer: 36
Expected answer: 36
Correct? Yes
Problem: Molly starts with 81 milliliters of toothpaste in a new tube. After brushing her teeth for a few days, she realizes she has used 78 milliliters. How many milliliters of toothpaste are left in the tube?
Llama 3 70B:
Reasoning: Molly starts with 81 milliliters of toothpaste. She uses 78 milliliters. To find out how many milliliters are left, we subtract the amount used from the initial amount: 81 - 78 = 3. ### Answer: 3
Expected answer: 3
Correct? Yes
Problem: David has 31 guitar picks. After some time, he notices he only has 22 left. How many guitar picks has David lost?
Llama 3 70B:
Reasoning: To find out how many guitar picks David lost, we need to subtract the number of picks he has left from the total number of picks he had initially. Let's subtract 22 from 31: 31 - 22 = 9 So, David has lost 9 guitar picks. ### Answer: 9
Expected answer: 9
Correct? Yes
Problem: A universe has 76 stars. If we subtract 5 of these stars, how many stars are left in the universe?
Llama 3 70B:
Reasoning: If we subtract 5 stars from the original 76 stars, we can find the number of stars left by performing the subtraction operation. 76 - 5 = 71 ### Answer: 71
Expected answer: 71
Correct? Yes
Problem: You have a total of 99 toothbrushes in your dental clinic. After distributing some to patients, you realize you now have 20 toothbrushes left. How many toothbrushes did you distribute to patients?
Llama 3 70B:
Reasoning: Let's say the number of toothbrushes distributed to patients is x. Since we started with 99 toothbrushes and now we have 20 left, we can set up the equation: 99 - x = 20 To solve for x, we can add x to both sides of the equation: 99 = 20 + x Subtracting 20 from both sides gives us: 79 = x So, the number of toothbrushes distributed to patients is 79. ### Answer: 79
Expected answer: 79
Correct? Yes
Problem: A starfish has 12 limbs in total. If we exclude 4 limbs that it uses to move around, how many limbs does the starfish use for other purposes?
Llama 3 70B:
Reasoning: The starfish has a total of 12 limbs. If 4 limbs are used for moving around, then the number of limbs used for other purposes is 12 - 4 = 8. ### Answer: 8
Expected answer: 8
Correct? Yes
Problem: A beehive contains 75 bees. This morning, 15 bees left the hive in search of food. How many bees remained in the hive?
Llama 3 70B:
Reasoning: The beehive initially had 75 bees. 15 bees left the hive, so we need to subtract 15 from 75 to find the number of bees that remained. 75 - 15 = 60 ### Answer: 60
Expected answer: 60
Correct? Yes
Problem: In a magnificent garden, there were initially 'p' flowers. Unfortunately, 21 of them wilted. Now, there are 11 flowers left in the garden. How many flowers were there in the garden originally?
Llama 3 70B:
Let's start by using the information that there are 11 flowers left in the garden. We know that 21 flowers wilted, so we can set up the equation: p - 21 = 11 To solve for p, we can add 21 to both sides of the equation: p = 11 + 21 p = 32 ### Answer: 32
Expected answer: 32
Correct? Yes
Problem: Jenny has 85 building blocks. After playing, she found out she has 14 blocks left on her play mat. How many building blocks did Jenny use?
Llama 3 70B:
Reasoning: Let's find out how many blocks Jenny used by subtracting the number of blocks left from the total number of blocks she had. Number of blocks used = Total number of blocks - Number of blocks left = 85 - 14 = 71 ### Answer: 71
Expected answer: 71
Correct? Yes
Problem: A school bus has numerous seats. After 17 students have alighted from the bus, there are 56 students still seated. How many students were initially on the school bus?
Llama 3 70B:
Let's say the initial number of students on the bus is x. We know that 17 students alighted from the bus, leaving 56 students still seated. This means that the number of students who remained on the bus is x - 17. We are given that x - 17 = 56. To find the initial number of students, we can add 17 to both sides of the equation: x - 17 + 17 = 56 + 17 x = 73 So, there were 73 students initially on the school bus. ### Answer: 73
Expected answer: 73
Correct? Yes
Problem: In a big storage, there are f bars of soap. After donating 9 bars to a local charity, there are now 81 bars of soap left. How many bars of soap were there initially in the big storage?
Llama 3 70B:
Let's say there were f bars of soap initially in the big storage. After donating 9 bars to a local charity, there are now 81 bars of soap left. This means that the number of bars of soap left is equal to the initial number of bars minus 9. We can set up an equation: f - 9 = 81 To solve for f, we can add 9 to both sides of the equation: f = 81 + 9 f = 90 ### Answer: 90
Expected answer: 90
Correct? Yes
Problem: A farmer harvested 57 oranges from one of his trees. When he counted all the oranges including the one harvested from the other tree, he found that he had a total of 72 oranges. How many oranges did he get from his other tree?
Llama 3 70B:
Reasoning: Let's say the number of oranges the farmer got from his other tree is x. We know that the total number of oranges is 72, and 57 of those came from one tree. So, we can set up the equation: x + 57 = 72. To solve for x, we can subtract 57 from both sides of the equation: x = 72 - 57 = 15. ### Answer: 15
Expected answer: 15
Correct? Yes
Problem: A pirate ship had originally 86 cannons, but due to a raging battle, several were destroyed. After the battle the ship had only 31 cannons left. How many cannons were destroyed in the battle?
Llama 3 70B:
Reasoning: Let's find the number of cannons destroyed by subtracting the number of cannons left from the original number of cannons. Number of cannons destroyed = Original number of cannons - Number of cannons left = 86 - 31 = 55 ### Answer: 55
Expected answer: 55
Correct? Yes
Problem: In the ocean, there are 73 sharks initially. Later, a few more sharks join them increasing the total number to 94. How many sharks joined later?
Llama 3 70B:
Reasoning: Let's say x sharks joined later. The total number of sharks after they joined is 94. We know that there were 73 sharks initially, so we can set up the equation: 73 + x = 94. To find the value of x, we can subtract 73 from both sides of the equation: x = 94 - 73 = 21. ### Answer: 21
Expected answer: 21
Correct? Yes
Problem: A farmer has 41 bananas. After selling some, he is left with 15 bananas. How many bananas did the farmer sell?
Llama 3 70B:
Reasoning: Let's say the number of bananas the farmer sold is x. Since the farmer is left with 15 bananas, we can set up the equation: 41 - x = 15 To solve for x, we can add x to both sides of the equation: 41 = 15 + x Subtracting 15 from both sides gives us: 26 = x So, the farmer sold 26 bananas. ### Answer: 26
Expected answer: 26
Correct? Yes
Problem: In the sky, there are 56 stars visible. However, due to city lights, you can only see 30 of them. How many stars are obscured by the city lights?
Llama 3 70B:
Reasoning: To find the number of stars obscured by the city lights, we need to subtract the number of stars visible from the total number of stars. Let's subtract the number of visible stars (30) from the total number of stars (56): 56 - 30 = 26 ### Answer: 26
Expected answer: 26
Correct? Yes
Problem: Tom has 65 pairs of sunglasses. Over the years, he lost some and now he has 55 pairs of sunglasses. How many pairs of sunglasses did Tom lose?
Llama 3 70B:
Reasoning: To find out how many pairs of sunglasses Tom lost, we need to subtract the number of pairs he has now from the number of pairs he had initially. Let's subtract 55 from 65: 65 - 55 = 10 So, Tom lost 10 pairs of sunglasses. ### Answer: 10
Expected answer: 10
Correct? Yes
Problem: In a book, there are 42 words on the page. After reading some of the words, there are only 2 words left that you haven't read yet. How many words have you read?
Llama 3 70B:
Reasoning: Let's start with the total number of words, which is 42. If there are 2 words left that haven't been read, that means the number of words read is the total number of words minus the number of words left. Number of words read = Total number of words - Number of words left = 42 - 2 = 40 ### Answer: 40
Expected answer: 40
Correct? Yes
Problem: There were initially 37 butterflies in the park. The number dropped such that there were 20 butterflies left. How many butterflies had left the park?
Llama 3 70B:
Reasoning: To find the number of butterflies that had left the park, we need to subtract the number of butterflies left from the initial number of butterflies. Let's subtract 20 from 37: 37 - 20 = 17 So, 17 butterflies had left the park. ### Answer: 17
Expected answer: 17
Correct? Yes
Problem: A hat shop initially has a total of (z) hats. After selling 27 hats, there were 25 hats left in the store. How many hats did the store initially have?
Llama 3 70B:
Let's say the initial number of hats is z. After selling 27 hats, there were 25 hats left, so we can set up the equation: z - 27 = 25 To solve for z, we can add 27 to both sides of the equation: z = 25 + 27 z = 52 ### Answer: 52
Expected answer: 52
Correct? Yes
Problem: A grandma's blanket is 96 inches long. 39 inches of this length is covered in a decorative border. What is the length of the main part of the blanket (not including the border)?
Llama 3 70B:
Reasoning: To find the length of the main part of the blanket, we need to subtract the length of the decorative border from the total length of the blanket. Length of main part = Total length - Length of border = 96 inches - 39 inches = 57 inches ### Answer: 57 inches
Expected answer: 57
Correct? Yes
Problem: Billy has 56 pillows in his pillow fort. If he removes 46 of these pillows, how many pillows will Billy have left in his fort?
Llama 3 70B:
Reasoning: Billy starts with 56 pillows. If he removes 46 pillows, he will be left with 56 - 46 = 10 pillows. ### Answer: 10
Expected answer: 10
Correct? Yes
Problem: Ronnie has 77 pairs of socks in total. Out of these, 52 pairs are white. How many pairs of non-white socks does Ronnie have?
Llama 3 70B:
Reasoning: To find the number of non-white socks, we need to subtract the number of white socks from the total number of socks. Let's subtract 52 (white socks) from 77 (total socks): 77 - 52 = 25. ### Answer: 25
Expected answer: 25
Correct? Yes
Problem: Jim starts with 68 pencils and uses some of them throughout the school year. If at the end of the school year, he has 13 pencils left, how many pencils did Jim use throughout the year?
Llama 3 70B:
Reasoning: Let's start by identifying the number of pencils Jim had initially, which is 68. At the end of the school year, he had 13 pencils left. To find out how many pencils Jim used, we need to subtract the number of pencils he had left from the initial number of pencils. Number of pencils used = Initial number of pencils - Number of pencils left = 68 - 13 = 55 ### Answer: 55
Expected answer: 55
Correct? Yes
Problem: A farmer has 63 gallons of milk. He sells some of it and after the sale, he is left with 27 gallons. How many gallons of milk did the farmer sell?
Llama 3 70B:
Reasoning: Let's say the farmer sold x gallons of milk. Since he was left with 27 gallons, we can set up the equation: 63 - x = 27 To solve for x, we can add x to both sides of the equation: 63 = 27 + x Subtracting 27 from both sides gives us: 36 = x So, the farmer sold 36 gallons of milk. ### Answer: 36
Expected answer: 36
Correct? Yes
Problem: The number of sunglasses in a store is 87. Among these, 40 sunglasses are for women. How many sunglasses in the store are for men?
Llama 3 70B:
Reasoning: Let's use subtraction to find the number of sunglasses for men. We know that the total number of sunglasses is 87, and 40 of them are for women. To find the number of sunglasses for men, we subtract the number of sunglasses for women from the total number of sunglasses. Number of sunglasses for men = Total number of sunglasses - Number of sunglasses for women = 87 - 40 = 47 ### Answer: 47
Expected answer: 47
Correct? Yes
Problem: A tube of toothpaste usually lasts you for 9 weeks. Now, you've noticed that your current tube has lasted for 61 weeks already. For how many weeks has your tube of toothpaste surpassed its usual duration?
Llama 3 70B:
Reasoning: The tube of toothpaste usually lasts for 9 weeks. It has already lasted for 61 weeks. To find out how many weeks it has surpassed its usual duration, we need to subtract the usual duration from the actual duration. 61 (actual duration) - 9 (usual duration) = 52 ### Answer: 52
Expected answer: 52
Correct? Yes
Problem: In a box, there are 79 triangles. Overall, if there are 93 shapes in the box, how many shapes are not triangles?
Llama 3 70B:
Reasoning: Let's find the number of shapes that are not triangles by subtracting the number of triangles from the total number of shapes. Number of shapes that are not triangles = Total number of shapes - Number of triangles = 93 - 79 = 14 ### Answer: 14
Expected answer: 14
Correct? Yes
Problem: A roller skating rink had 44 pairs of roller skates. After purchasing several new pairs, it now has 71 pairs. How many new pairs of roller skates did the rink buy?
Llama 3 70B:
Reasoning: Let's find the difference between the number of pairs of roller skates the rink has now and the number it had initially. This will give us the number of new pairs purchased. New pairs purchased = Current total - Initial total = 71 - 44 = 27 ### Answer: 27
Expected answer: 27
Correct? Yes
Problem: On the shore, a beachcomber found 58 starfish. Later in the day, he found a few more starfish, bringing his total count to 69. How many additional starfish did the beachcomber find later in the day?
Llama 3 70B:
Reasoning: Let's say the beachcomber found x additional starfish later in the day. We know that the total number of starfish he found is 69, and he already had 58 starfish. So, we can set up the equation: 58 + x = 69. To solve for x, we can subtract 58 from both sides of the equation: x = 69 - 58 = 11. ### Answer: 11
Expected answer: 11
Correct? Yes